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Abstract

In the work reported here, we seek to answer the following question: Can damage be reduced
by developing materials with micro-structure?. We consider a micro-structured elastic slab con-
taining an edge crack, subjected to sinusoidal thermal striping. In this case, themicro-structure
is fully discrete and takes the form of a genuine triangular lattice in the vector setting of pla-
nar elasticity. It is well known that , in the continuum, the stress field is singular at the crack
tip, whereas for a crack in a lattice, there is merely a stress concentration at the crack front
bond. Here, we analyse the local properties of the crack in the lattice and compare these with
those of a corresponding homogenised medium. In particular, we introduce the notion of an
“effective stress intensity factor” for the edge crack in the lattice, obtained from the crack tip
displacements. The effect of varying the number of lattice cells per unit area on this “effective
stress intensity factor” is examined and compared with the continuum limit.

The geometry
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We consider a finite block of width d and height h, with a finite edge crack of length a located
along x2 = 0 as shown on the left. We also consider a corresponding triangular lattice, a section
of which is shown on the right. For the work presented here, we consider two lattices with
differing degrees of refinement. The first is the sparse lattice with links of length ℓ = 2 × 10−4m
and cross-sectional area S = 2 × 10−8m2. The second is referred to as the fine lattice with links
of length ℓ = 1 × 10−4m and cross-sectional area S = 1 × 10−8m2.

The uncoupled thermoelastic problem in the continuum

The thermal striping problem in the continuum for the rectangle Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2},
which contains a finite edge crackMa = {x ∶ 0 ≤ x1 ≤ a, x2 = 0}, with the crack facesM±a , satisfies
the following problem for the elastic displacement fieldU(x; t):

LU(x; t) = α(3λ + 2µ)∇T (x; t), x ∈ Ω ∖Ma,

σ(n)[U ](x; t) = α(3λ + 2µ)nT (x; t), x ∈ B0 ∪Bd ∪M+a ∪M−a , (1)
U(x; t) = 0, x ∈ {x ∶ 0 < x1 < d, ∣x2∣ = h/2},

The Lamé operator:
L = µ∆ + (λ + µ)∇[∇⋅]
λ and µ are the Lamé coefficients
α is the coefficient of linear thermal
expansion

Br = {x ∶ x1 = r, ∣x2∣ < h/2}
Traction operator:
σ(n)[U ] = {λ(∇⋅U)I+µ{∇U +(∇U)T]}n
n and I are the outward unit normal and
2 × 2 identity matrix respectively.

The uncoupled thermoelastic problem in the discrete lattice

Consider auniformtriangularmeshingofR2withnodes atdiscretepositionsx(p) = ℓNp, where
p ∈ Z2 labels the nodes separated by distance ℓ and

N = (1 1/2
0
√
3/2) . (2)

It is convenient to introduce the following sets of nodes

Interior nodes:
Γ = {p ∶ 0 < x1(p) < d, ∣x2(p)∣ < h/2}
Lateral boundaries:
γ0 = {p ∶ 0 ≤ x1(p) ≤ ℓ/2, ∣x2(p)∣ ≤ h/2}
γd = {p ∶ d −

ℓ

2
≤ x1(p) ≤ d, ∣x2(p)∣ ≤ h/2}

Horizontal boundaries
γh = {p ∶ ℓ/2 < x1(p) < d − ℓ/2, ∣x2(p)∣ = h/2}
Crack face nodes:
ML

a = {p ∶ 0 ≤ x1(p) ≤ a, −
√
3ℓ/2 ≤ x2(p) ≤ 0}

Nodes connected to p:
C(p) = {q ∶ ∣x(p + q) −x(p)∣ = ℓ} ∖ML

a

The problem for the in-plane elastic displacement v(p) of a thermally striped lattice with a
finite edge crack is then

∑
q∈C(p)

B(q) {u(p + q; t) −u(p; t)} = αℓ
2
∑

q∈C(p)
b(q) {Θ(p + q; t) +Θ(p; t)} , p ∈ Γ, (3)

u(p; t) = 0, p ∈ γh,
where Θ(p; t) is temperature at node p at time t. The matrices B(q) and vectors b(q) describe
the direction of the bond linking lattice nodes p + q and p:

B(q) = ( cos2ϕ cosϕ sinϕ

cosϕ sinϕ sin2ϕ
) , b(q) = (cosϕ

sinϕ
) , (4)

where ϕ is the angle between the pointNq and the positive x1-axis.

The heat conduction problem on the continuum

The continuum amplitude (θ(x) = T (x, t)e−iωt) satisfies the following problemon the rectangle
Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2}

κ∆θ(x) = iωθ(x), x ∈ Ω,
θ(x) = T0, x ∈ Ω ∩ {x ∶ x1 = 0}, (5)
θ(x) = 0, x ∈ Ω ∩ {x ∶ x1 = d},

∇[θ(x)] ⋅ p = 0, x ∈ Ω ∩ {x ∶ ∣x2∣ = h/2},
where ω is the radian frequency of the thermal load and κ is the thermal diffusivity of Ω. Physi-
cally (5) corresponds to the time-harmonic thermal striping of a finite conducting rectangle by
a sinusoidal load on the left face.

The heat conduction problem on the lattice

The time-harmonic heat conduction problem on a finite lattice may be written in terms of the
discrete complex amplitude ϑ(p)

ϑ(p) = 1

iωΞ + ∣N (p)∣ ∑
q∈N (p)

ϑ(p + q), p ∈ Γ,

ϑ(p) = T0, p ∈ γ0, (6)
ϑ(p) = 0, p ∈ γd,

ϑ(p) = 1

∣N (p)∣ ∑
q∈N (p)

ϑ(p + q), p ∈ γh,

here Ξ = Cℓ/(Sλ) and N (p) = {q ∶ ∣x(p + q) − x(p)∣ = ℓ} denotes the set of nodes connected to
node p, with q ∈ Z2.

An effective stress intensity factor for the lattice

For a sufficiently refined lattice the vertical displacements behind the crack tip exhibit simi-
lar asymptotic behaviour to the continuum. In particular, it is assumed that for a sufficiently
refined lattice

u2(p) ∼
KI

(1 − k2)µ

√
a − x1(p)

2π
+ b1 [a − x1(p)] + b2 [a − x1(p)]3/2 + b3 [a − x1(p)]2 , (7)

for p ∈ {p ∶ x1(p) < a, x2(p) = 0} and where k = 3 − 4ν and µ is the shear modulus corresponding
to the homogenised continuum.

The figure shows that the expan-
sion (7) is sufficient to accurately
capture the behaviour of the u2
displacements behind the crack
tip and that the displacements
exhibit the same qualitative be-
haviour as in the continuum.
In direct analogy to the displace-
ment extrapolation method
for the continuum, an effective
stress intensity factor at a partic-
ular time may be determined by
fitting the expansion (7) to the
displacements behind the crack
tip.
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For the continuum the stress intensity factor is evaluated from the finite element results using
a variant of the J integral, which for plane strain is related toKI by

1 − ν2
E

K2
I =

1

2 ∫
γ

(σijϵij −
Eζ

1 − 2ν
Tϵii)dx2 − ∫

γ

σijnj
∂Ui

∂x1
ds + Eζ

1 − 2ν ∫
Γ

ϵii
∂T

∂x1
dA, (8)

where the arbitrary curve γ encloses the area Γ, σij is the usual thermoelastic stress tensor,
ϵij are the components of strain, E is Young’s modulus. The line and area integrals in (8) were
computed from the finite element results using fourth order quadrature over three contours
in the vicinity of the crack tip.

The stress intensity factor for the lattice vs. continuum
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The figure shows the maximum
[effective] ∆KI values for the
thermally striped continuum and
the two lattices at three striping
frequencies: 0.0625Hz, 1Hz and
6.25Hz. The continuum curves
show similar behaviour to that
observed in earlier works, with
the local maxima of∆KI increas-
ing and shifting further to the
right for lower frequencies. For
sufficiently long cracks, the lat-
tice curves exhibit the samequal-
itative behaviour as the contin-
uum.

Compared with the continuum, the lattices have a reduced effective stress intensity factor,
except for shorter cracks at higher frequencies. It is also apparent that the more “refined” the
lattice, the closer the stress intensity factor is to the continuum value. For shorter edge cracks
(smaller than 2× 10−3m) the nodal displacements no longer exhibit the square root asymptotic
behaviour.

Parametric values

Parameter

Symbol Description Numerical Value

S/ℓ Ratio of the length of the lattice links to cross-sectional area (m) 10−4

T0 Amplitude of thermal striping load (○C) 10

κ Thermal diffusivity (m2/s) 2.29 × 10−5
h Block height (m) 1.16

√
3 × 10−2

d Block width (m) 10−2

E Young’s Modulus (GPa) 163.5

ν Poisson’s ratio 1/4
α Linear thermal expansion coefficient (1/○C) 2 × 10−5
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