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Introduction
Composite materials with thin interphases are widely used in modern industry, as their structure
enhances thermal and mechanical properties of the material. However, the common approach using
finite elements method for modelling of such materials can be both challenging and inaccurate,
possibly even leading to numerical instability, which is, clearly, not acceptable.
To tackle this problem, the interphase is replaced in mathematical and numerical models with an
infinitesimal (zero thickness) object modelled by transmission conditions [1–3].

Problem formulation
Modelling problem: a domain containing thin
curvilinear interphase with smooth boundaries,
where the heat transfer equation is satisfied

∇ · (k∇T ) +Q = cρ
∂T

∂t
, (1)

where T (x, y) is the unknown temperature,
Q(T, x, y) the thermal source, k(T, x, y) the
thermal conductivity, c heat capacity and ρ the
density of the material.
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Figure 1: Domains with circular thin interphase (left)
and zero thickness interface (right)

Assumptions: a) Q does not change its sign
within the interphase, b) the boundaries of the
interphase is comparatively small and does not
change its sign, c) transmission conditions along
the boundaries Γ± are:

[T ] |Γ± = 0, [nq] |Γ± = 0, (2)

where n is the normal vector to the surface and
q the heat flux, defined by Fourier’s law:

q = −k(T )∇T. (3)

Transition to polar coordinates
Due to the shape of the interphase it makes sense
to switch to polar coordinates. Then equation 1
and the transmission conditions are:
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(4)
T± − T (r±, φ, t) = 0, (5)
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T (r±, φ, t) = 0,

(6)
where

n± = [n±r , n
±
φ ] =

[
r±(φ), r′±(φ)

]
√
r2
±(φ) + (r′±(φ))2

. (7)
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Rescaling the interphase
Small parameters in the model: a) thickness of
the interphase h << 1, b) low heat conductivity
k << k±
Asymptotic procedure:

h(φ) = εh̃(φ), k(T, r, φ) = εk̃(T, ξ, φ),

ξ =
r − r0(φ)

εh̃(φ)
, Q(T, r, φ) =

1

ε
Q̃(T, ξ, φ).
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Figure 2: The rescaled interphase

After inserting into (4), the main terms of the
expansion give:
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+ Q̃ = 0. (8)

General algorithm
1. Integrate (8):

f(T, ξ, C0, C1) = 0. (9)

2. Differentiate the integral:

−n0
ξ(φ)k̃

h̃

∂

∂ξ
f(T, ξ, C0, C1) = q̃ξ

∂

∂T
f(T, ξ, C0, C1)

(10)
3. Insert the values at the boundaries of the
interphase (see Fig.2) into (9) and (10) to obtain
two conditions:

F1(T+, T−, q+, q−) = 0, (11)
F2(T+, T−, q+, q−) = 0.

Transmission conditions were evaluated for 3
special cases of Q and k. The results pre-
sented here were derived for Q̃ = Q̃(T, φ, t), k̃ =

k̃(T, φ, t).
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Results
Results for circular interphase a) analytic solu-
tions, b) solutions to the problem with transmis-
sion conditions (circular markers) and c) values
from COMSOL; close-ups for the interphase; the
heat flux along the boundaries: exact (solid line)
and FEM-modelled (markers).
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Results for star-shaped interphase COMSOL
gives too big a discrepancy (for heat flux). The
graphs show: the geometry, COMSOL values for
temperature and for heat flux.
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Conclusions
Numerical verifications prove that the derived
conditions work and give a small error (O(ε2)).
At the same time, COMSOL provides less accu-
rate results for the same structure with a com-
plex geometry (especially for heat flux) .


