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The aim:

♥ to provide an asymptotic analysis of the Hele-Shaw moving boundary

value problem with a small obstacle in the flow.

Plan:

♠ historical remarks;

♠ geometry corresponding to the considered problem;

♠ real-variable Hele-Shaw model in a domain with an obstacle;

♠ Maz’ya & Movchan asymptotic representation of Green’s function;

♠ asymptotic study of the solution to the Hele-Shaw boundary value

problem in a domain with an obstacle.
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Few historical remarks.
• H. S. Hele-Shaw (1898) - description of an experiment in 2D cell
• S. L. Leibenson (1932) - application in oil production
• Yu. P. Vinogradov, P. P. Kufarev (1948) - complex Hele-Shaw model

• S. Richardson (1972) - rediscovering of complex Hele-Shaw model
• P. Ya. Polubarinova-Kochina (1945), L. A. Galin (1945) - first exact

solutions to Hele-Shaw problem
• B. Gustafsson (1984) - local existence of rational solution
• B. Gustafsson (1984) - differential equation for Hele-Shaw model
• B. Gustafsson (1985) - existence of weak solution
• M. Reissig, L. von Wolfersdorf (1993) - new proof of local existence

• P. G. Saffman (1986), S. Tanveer (1993) - surface tension

regularization
• L. Romero (1981) - kinetic undercooling regularization
• J. Escher & G.Simonett (1997) - maximum regularity
• S.N. Antontsev, C.R. Gonçalves, A.M. Meirmanov (2003) - existence

and uniqueness of the classical solution
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Description of the geometry.

Viscous incompressible fluid occupies a doubly connected domain D1(t)

at a time instant t ≥ 0.

Internal domain F is a fixed small obstacle (hole).

The simply connected domain without hole will be denoted D(t).

It is supposed that F ⊂ D(0) has a nonempty interior, and the diameter

of obstacles δ := diam F is positive.

D(0) is supposed to be open bounded set with a smooth boundary and

dist {∂ F, ∂ D(0)} = 2d > 0. (1)

Without loss of generality we can assume that δ and d (δ < d) are

dimensionless parameters and that diam D(0) = 1.
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Derivation of the model.

Two-dimensional potential flow of incompressible fluid in the Hele-Shaw

cell, i.e. in a gap between two parallel plates of distance h.

The flow is modelled by the velocity field V = (V1, V2, V3) in D1(t) ∈ R2:

∂ V

∂ t
= 0, V3 = 0. (2)

V = (V1, V2) is proportional to the pressure p gradient:

V = −
h2

12µ
∇ p, (3)

where µ is the viscosity coefficient of the fluid. For h and µ being constant

△ p = 0. (4)

p(z, t) ∼ −
Q(t)

2π
log |z − z0|, |z| → z0. (5)
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∂ p

∂ n
= 0, z ∈ ∂ F, (6)

Surface tension dynamic boundary condition

p(z) = 0, z ∈ Γ(t) = ∂ D(t), (7)

and kinematic boundary condition

dΓ

dt
= V, z ∈ Γ(t) = ∂ D(t). (8)

Together with Hele-Shaw equation it gives

dΓ

dt
= −

h2

12µ
∇ p. (9)
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Real-variable Hele-Shaw model.

New unknown one-parametric family of C2-diffeomorphisms

w(s, t) = (u(s, t), v(s, t)) : ∂ U×I → Γ(t), U = {s = (s1, s2) ∈ R
2 : |z| < 1}.

(10)

The function w(s, t) in (10) determines an unknown parametrization of

the free boundary Γ(t)

(i) w(s, t) ∈ Γ(t) for all (s, t) ∈ ∂ U × I,

(ii) w(·, t) : ∂ U → Γ(t) is a C2-diffeomorphism for each fixed t ∈ I,

(iii) w(·, ·) ∈ C2
(

∂ U × I;R2
)

.
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It follows from the relations (4)–(7) that for each fixed appropriate t

the unknown pressure p coincides up to constant factor with Green’s

function of the operator −△ in the doubly connected domain D1(t) with

the homogeneous Neumann data on the fixed boundary ∂ F and the

homogeneous Dirichlet data on the free boundary Γ(t).

p = Q · GD1(t)
, (11)

and GD1(t)
is the solution of the following mixed boundary value problem

△GD1(t)
(z, z0) + δ0(z − z0) = 0, z ∈ D1(t), (12)

GD1(t)
(z, z0) = 0, z ∈ Γ(t), (13)

∂ GD1(t)

∂ n
(z, z0) = 0, z ∈ ∂ F. (14)
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Real-variable formulation in terms of diffeomorphisms.

Problem (HS0). Find a pair {w(s, t);G(z, z0; t)}, such that w(s, t) :

∂ U × I → R2 is a C2-diffeomorphism satisfying

(i) w(s, t) ∈ Γ(t) for all (s, t) ∈ ∂ U × I;

(ii) w(·, t) : ∂ U → Γ(t) is a C2-diffeomorphism for each fixed t ∈ I;

(iii) w(0)(s) = w(s,0) is a given C2-diffeomorphism of the unit circle ∂ U,

which describes the boundary Γ(0) of initial domain D1(0);

(iv) G(z, z0; t) is Green’s function of the operator −△ in the doubly

connected domain D1(t) with the homogeneous Neumann data on the

fixed boundary ∂ F and the homogeneous Dirichlet data on the free

boundary Γ(t);

(v) ∂t w(s, t) = −Qh2

12µ
· ∇G(w(s, t), z0; t) for all (s, t) ∈ ∂ U × I.
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Mazya-Movchan asymptotic results.
Let Ω ⊂ R2 be a bounded open plane domain with compact closure cl Ω

and a smooth boundary ∂ Ω. Let ω be a bounded domain in R2 with

compact closure cl ω and smooth boundary ∂ ω. Let the origin O belongs

to the intersection of Ω and ω, i.e. O ∈ Ω∩ω. ωε = {z ∈ R2 : ε−1 (z − O) ∈

ω}, where ε is a small positive parameter, such that ωε ⊂ Ω. Let Ωε be

an open doubly connected domain Ωε = Ω \ cl ωε.

Denote by Gε Green’s function of the operator −△ with the Dirichlet

data on ∂ Ω and the Neumann data on ωε, namely

△z Gε(z, ζ) + δ(z − ζ) = 0, z, ζ ∈ Ωε, (15)

Gε(z, ζ) = 0, z ∈ ∂ Ω, ζ ∈ Ωε, (16)

∂ Gε

∂ nz
(z, ζ) = 0, z ∈ ∂ ωε, ζ ∈ Ωε. (17)
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Let G be Green’s function of the Dirichlet problem for operator −△ in Ω

G(z, ζ) =
1

2π
log

1

|z − ζ|
− H(z, ζ), (18)

where H is a unique solution to the following problem

△z H(z, ζ) = 0, z, ζ ∈ Ω, (19)

H(z, ζ) =
1

2π
log

1

|z − ζ|
, z ∈ ∂ Ω, ζ ∈ Ω. (20)

Introduce auxiliary variables (scaled coordinate) ξ = 1
ε
z, η = 1

ε
ζ.

11



Define the Neumann function N of the exterior Neumann problem for

operator −△ in the domain R2 \ ω

N (ξ, η) =
1

2π
log

1

|ξ − η|
− hN(ξ, η), (21)

where hN is a unique solution to the following problem (regular part of

the Neumann function)

△ξ hN(ξ, η) = 0, ξ, η ∈ R
2 \ cl ω, (22)

∂ hN

∂ nξ

(ξ, η) =
1

2π

∂

∂ nξ

log
1

|ξ − η|
, ξ ∈ ∂ ω, η ∈ R

2 \ cl ω, (23)

hN(ξ, η) → 0, as |ξ| → ∞, η ∈ R
2 \ cl ω. (24)
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Introduce the vector dipole fields D(ξ) = (D1(ξ),D2(ξ))
T :

△D(ξ) = 0, ξ ∈ R
2 \ cl ω, (25)

∂ Dj

∂ n
(ξ) = nj, ξ ∈ ∂ ω, j = 1,2, (26)

Dj(ξ) → 0, as |ξ| → ∞, j = 1,2, (27)

where n1, n2 are components of the inward unit normal vector to ∂ ω.

The dipole fields Dj, j = 1,2, satisfy the asymptotic representation for

sufficiently large |ξ|

Dj(ξ) =
1

2π

2
∑

k=1

Pjkξk

|ξ|2
+ O(|ξ|−2), (28)

where

Pjk = −δjk · meas (ω) −
∫

R2\ω

∇Dj(ξ) · ∇Dk(ξ)dξ. (29)

13



(Mazya-Movchan, 2009) Green’s function Gε for the boundary value

problem (15)–(17) with the Dirichlet data on ∂ Ω and the Neumann data

on ∂ ωε has the asymptotic representation

Gε(z, ζ) = G(z, ζ) + G∗
ε(z, ζ) + rε(z, ζ), (30)

where G is Green’s function of the Dirichlet problem for Laplace equation

in the domain Ω, the principal part G∗
ε of the asymptotic representation

is defined in terms of Neumann function N , regular part H of Green’s

function G and the dipole field D

G∗
ε(z, ζ) = N

(

z

ε
,
ζ

ε

)

+
1

2π
log

(

|z − ζ|

ε

)

+εD
(

z

ε

)

·∇zH(0, ζ)+εD
(

ζ

ε

)

·∇ζH(z,0),

(31)

and the remainder satisfies the following uniform inequality

|rε(z, ζ)| ≤ const · ε2. (32)
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Corollaries:

1. (Mazya-Movchan, 2009) Let min {|z|, |ζ|} > 2ε. Then the following

asymptotic formula holds:

Gε(z, ζ) = G(z, ζ) −
ε2

4π2

zT

|z|2
P

ζ

|ζ|2
+ (33)

+
ε2

2π

{

zT

|z|2
P∇zH(0, ζ) +

ζT

|ζ|2
P∇ζH(z,0)

}

+

+ ε2O

(

1

|z|2
+

1

|ζ|2

)

,

where H is the regular part of Green’s function G in the domain Ω defined

by (19)-(20), and P is the dipole matrix for ω defined in (29).
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2. (Mazya-Movchan, 2009) For all z, ζ ∈ Ωε asymptotic formula (30)

can be presented in the following form:

Gε(z, ζ) =
1

2π
log

1

|z − ζ|
− hN

(

1

ε
z,

1

ε
ζ

)

−H(0,0)− (34)

−
(

z − εD
(

1

ε
z

))

· ∇zH(0, ζ) −
(

ζ − εD
(

1

ε
ζ

))

· ∇ζH(z,0)+

+O
(

ε2 + |z|2 + |ζ|2
)

.
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Representation of the solution.

F = ωε, D(t) = Ω. (35)

Thus

G(z, z0; t) = Gε(z, z0). (36)

This function have to satisfy the following relations:

∂t w(s, t) = −
Qh2

12µ
· ∇zGε(w(s, t), z0) for all (s, t) ∈ ∂ U × I, (37)

w(s,0) = w(0)(s), s ∈ ∂ U, (38)

where w(0)(s) ∈ C2(∂ U) is a given function.
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We consider four essentially different situations:

(a) the source z0 and ALL points z = w(s, t) of the boundary ∂ Γ(0)

of the initial domain D1(0) are distant from the boundary ∂ ωε of the

obstacle;

(b) the source z0 is close to the boundary ∂ ωε of the obstacle, but ALL

points z = w(s, t) of ∂ Γ(0) are distant from ∂ ωε;

(c) the source z0 and SOME points z = w(s, t) of ∂ Γ(0) are close to

the boundary ∂ ωε of the obstacle; we consider those points z = w(s, t)

which are distant from ∂ ωε;

(d) the source z0 and SOME points z = w(s, t) of ∂ Γ(0) are close to

the boundary ∂ ωε of the obstacle; we consider those points z = w(s, t)

which are close to ∂ ωε.
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