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The aim:

@ to provide an asymptotic analysis of the Hele-Shaw moving boundary
value problem with a small obstacle in the flow.

Plan:

& historical remarks;

& geometry corresponding to the considered problem;

& real-variable Hele-Shaw model in a domain with an obstacle;

& Maz'ya & Movchan asymptotic representation of Green’s function;

& asymptotic study of the solution to the Hele-Shaw boundary value

problem in a domain with an obstacle.



Few historical remarks.

e H. S. Hele-Shaw (1898) - description of an experiment in 2D caell
S. L. Leibenson (1932) - application in oil production
Yu. P. Vinogradov, P. P. Kufarev (1948) - complex Hele-Shaw model

S. Richardson (1972) - rediscovering of complex Hele-Shaw model
P. Ya. Polubarinova-Kochina (1945), L. A. Galin (1945) - first exact

solutions to Hele-Shaw problem

B. Gustafsson (1984) - local existence of rational solution

B. Gustafsson (1984) - differential equation for Hele-Shaw model
B. Gustafsson (1985) - existence of weak solution

M. Reissig, L. von Wolfersdorf (1993) - new proof of local existence

P. G. Saffman (1986), S. Tanveer (1993) - surface tension

regularization
e L. Romero (1981) - kinetic undercooling regularization
e J. Escher & G.Simonett (1997) - maximum regularity
e S.N. Antontsev, C.R. Goncalves, A.M. Meirmanov (2003) - existence

and uniqgueness of the classical solution



Description of the geometry.

Viscous incompressible fluid occupies a doubly connected domain Dq(t)
at a time instant ¢t > 0.

Internal domain F' is a fixed small obstacle (hole).
The simply connected domain without hole will be denoted D(t).

It is supposed that F C D(0) has a nonempty interior, and the diameter
of obstacles ¢ := diam F' is positive.

D(0) is supposed to be open bounded set with a smooth boundary and

dist {9 F,d D(0)} = 2d > 0. (1)

Without loss of generality we can assume that § and d (§ < d) are

dimensionless parameters and that diam D(0) = 1.



Derivation of the model.

Two-dimensional potential flow of incompressible fluid in the Hele-Shaw

cell, i.e. in a gap between two parallel plates of distance h.

The flow is modelled by the velocity field V. = (Vq, Vo, V3) in D1(t) € R?:

oy 3 (2)
V = (V1, V») is proportional to the pressure p gradient:
h2
V=-—"-Vp, (3)
12u

where p is the viscosity coefficient of the fluid. For h and p being constant

Ap=0. (4)

Q@)
2

p(z,t) ~ 109 [z — 20[, [z = z0. (5)



9P _o ,ecorF (6)
on

Surface tension dynamic boundary condition

p(z) =0, zel(t)=0D(t), (7)

and kinematic boundary condition

dl”
Together with Hele-Shaw equation it gives
dr h?
= V p. (9)

dt~ 12u



Real-variable Hele-Shaw model.

New unknown one-parametric family of Cz—diffeomorphisms

w(s, t) = (u(s,t),v(s,t)) 1 0UXI — T (t), U={s=(s1,50) € R?: |z] < 1}.
(10)

The function w(s,t) in (10) determines an unknown parametrization of
the free boundary ()

(i) w(s,t) € I'(t) for all (s,t) € 0U x I,
(i) w(-,t) : 0U — (t) is a C2-diffeomorphism for each fixed ¢ € I,

(i) w(-,-) € C2 (aU % I RQ) .



It follows from the relations (4)—(7) that for each fixed appropriate ¢
the unknown pressure p coincides up to constant factor with Green’s
function of the operator —A in the doubly connected domain D7 (¢) with
the homogeneous Neumann data on the fixed boundary 0 F and the

homogeneous Dirichlet data on the free boundary ' (¢).

p=0Q Gp, (1) (11)

and ng(t) IS the solution of the following mixed boundary value problem

Ang(t)(Za ZO) _I_ 50(2 — ZO) — O? S Dl(t)7 (12}
ng(t)(za'ZO) — 07 S r(t)7 (13}

0
D1 (1) (2,20) =0, z€dF. (14)

on



Real-variable formulation in terms of diffeomorphisms.
Problem (HSg). Find a pair {w(s,t); G(z,20;t)}, such that w(s,t) :

oU x I — R? is a C?-diffeomorphism satisfying
(i) w(s,t) € T (t) for all (s,t) € 0U x I;
(i) w(-,t) : 80U — I'(t) is a C2-diffeomorphism for each fixed t € I;

(i) w(O)(s) = w(s,0) is a given C2-diffeomorphism of the unit circle U,
which describes the boundary I'(0) of initial domain D1(0),

(iv) G(z,zg9;t) is Green’s function of the operator —/A in the doubly
connected domain Dq(t) with the homogeneous Neumann data on the
fixed boundary 0 F and the homogeneous Dirichlet data on the free
boundary I (t);

(V) 8 w(s,t) = —Q° . VG (w(s, 1), z: t) for all (s,t) € OU x I.
124



Mazya-Movchan asymptotic results.
Let Q c R?2 be a bounded open plane domain with compact closure ¢l €2

and a smooth boundary 0<2. Let w be a bounded domain in R2 with
compact closure clw and smooth boundary Odw. Let the origin O belongs
to the intersection of Q and w, i.e. O € QNw. we ={2z€R?: e 1 (2 -0) €
w}, where ¢ is a small positive parameter, such that w: C Q2. Let Q. be

an open doubly connected domain 2 = Q2 \ ¢l we.
Denote by G- Green's function of the operator —A with the Dirichlet

data on 902 and the Neumann data on ws, namely

Azgc?('zaC)_l_é(Z_C) :O7 ZvCE Q€7 (15)
Ge(2,() =0, z€0%,( € €2, (16)
895(Z7C) =0, z€ 0w (€ . (17)

Ony
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Let G be Green’s function of the Dirichlet problem for operator —A in Q2

1 1
G(z,0) = 5— 9]

where H is a unique solution to the following problem

_H(Z7C)7

AZH(Z)C) — Oa ZaC € Qa

1

‘H@C)———mg z2€ 00, €.

1
|z — ¢’

Introduce auxiliary variables (scaled coordinate) &€ = 1z,n7 = 1¢.

(18)

(19)

(20)

11



Define the Neumann function N of the exterior Neumann problem for

operator —A in the domain R?\ w

N(em = 5-tog

where hp is a unique solution to the following problem (regular part of

the Neumann function)
Nehyn(€m) =0, &neR?\dw, (22)

8hN 1 0

(£ n) = ———1log

, fG@w,nGRQ\clw, (23)
2m I ng & —n

hn(&n) — 0, as|él — oo, n€R?\ clw. (24)

12



Introduce the vector dipole fields D(¢) = (D1(¢), Do ()T

AD(E) =0, £e€R?\duw, (25)
") =nj, gcow j=12, (26)
D;(©) 0, aslél—oo, j=1,2, (27)

where ni,no are components of the inward unit normal vector to Jw.
The dipole fields D;, j = 1,2, satisfy the asymptotic representation for
sufficiently large [£|

D) = - z |£T§k +0(le12), (28)
where
Pix = —0j - meas (w) — / V D;(€) - V Dy(€)dt. (29)

R2\w
13



(Mazya-Movchan, 2009) Green’s function G. for the boundary value
problem (15)—(17) with the Dirichlet data on 02 and the Neumann data
on Owes has the asymptotic representation

Ge(2,0) = G(2,0) + G2(2,0) + re(2,0), (30)

where G is Green’s function of the Dirichlet problem for Laplace equation
in the domain <2, the principal part GX of the asymptotic representation
is defined in terms of Neumann function N, regular part H of Green’s
function G and the dipole field D

G:() =N (= g> + log ('Z_C|>+5D( )-V:H(0,Q)+D (C) YV H(2,0),
g € 271 €
(31)
and the remainder satisfies the following uniform inequality
7: (2, ()| < const - 2, (32)

14



Corollaries:

1. (Mazya-Movchan, 2009) Let min {|z|,|{|} > 2¢. Then the following
asymptotic formula holds:

2 ZT ¢
82 pra CT
+- {|Z|27DVZH(0, )+ |C|2PV<H(,2 0)}

—|—€20< L i)
212 1¢12)

where 'H is the regular part of Green’s function G in the domain €2 defined
by (19)-(20), and P is the dipole matrix for w defined in (29).

15



2. (Mazya-Movchan, 2009) For all z,{ € Q. asymptotic formula (30)
can be presented in the following form:

1 1 1 1
G:(2,0) = 5109 T —hwy (22 ¢) = 1(0,0)- (34)

- (z —eD (2)) V. H(0,¢) - (g —eD Gg)) Y H(z,0)+

3

+0 (24122 +1¢7).

16



Representation of the solution.

F=we., D)= (35)
Thus
G(z,20;t) = Ge(z, 20). (36)
This function have to satisfy the following relations:
Orw(s,t) = —%hj - V.Ge(w(s,t),zg) forall (s,t) € 0U x I, (37)
w(s,0) = wl®(s), s€al, (38)

where w(0)(s) € C2(8U) is a given function.

17



We consider four essentially different situations:

(a) the source zp and ALL points z = w(s,t) of the boundary 9 (0)
of the initial domain D1(0) are distant from the boundary dw: of the

obstacle;

(b) the source zg is close to the boundary dw. of the obstacle, but ALL
points z = w(s,t) of 9 (0) are distant from 0 wg;

(c) the source zg and SOME points z = w(s,t) of 9IN(0) are close to
the boundary dws of the obstacle; we consider those points z = w(s,t)

which are distant from 0 weg;

(d) the source zg and SOME points z = w(s,t) of 9 (0) are close to
the boundary dws of the obstacle; we consider those points z = w(s,t)

which are close to 0 we.
18



