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Abstract

The work aims to develop a numerical method for modelling hydraulic
fractures in strongly inhomogeneous rocks. We employ the complex variable
(CV) boundary integral equations specially tailored for blocky systems with
multiple interfaces. Their numerical implementation is carried out by includ-
ing the CV boundary element method (BEM) in frames of the fast multipole
method (FMM) to solve systems with large (up to millions) number of un-
knowns. Recurrent analytical quadrature rules are used for increasing the
robustness and accuracy of calculations. They are obtained for higher order
approximations of the density at straight and circular-arc, ordinary, tip and
multi-wedge elements. Conclusions are drawn on the accuracy of the method
developed.

1 Introduction

Hydraulic fracturing is one of the major techniques of reservoir stimulation em-
ployed by the petroleum and gas industry. In practice this method is used in rock
mass, which is strongly inhomogeneous. Meanwhile, analytical studies and available
numerical codes do not account for this factor because of extreme mathematical
difficulties. The most advanced code by the Schlumberger Company models only a
vertical fracture propagating across a few horizontal elastic layers. This work aims
to develop a numerical method, which may serve for accounting for strong inhomo-
geneity. As a basis, we employ boundary integral equations (BIE) in a form specially
tailored to model blocky systems with complicated interfacial conditions at contacts
of structural elements and containing pores, inclusions and growing cracks [1], [2].
For such structures, solving the BIE by the boundary element method (BEM) is
superior over the finite element method. The main difficulty when employing this
method for strongly inhomogeneous rock is very large number (up to millions) un-
knowns. To overcome the difficulty, we follow the line of combining the BEM with
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the fast multipole method (FMM) (see, e.g. [3]). In this work the combined BEM-
FMM is developed for plane problems in complex variables (CV). In contrast with
known applications of the BEM-FMM, we employ (i) the mentioned special forms of
the BIE, (ii) combinations of circular-arc and straight boundary elements providing
continuous tangent when approximating smooth parts of external boundaries and
contacts, (iii) special singular elements accounting for singular behaviour of fields
near singular points like common apexes of structural elements, (iv) approximations
of higher order for circular-arc and straight boundary elements both ordinary and
singular, (v) analytical recurrent formulae for integrals defining influence coefficients
of the BEM and multipole moments of the FMM. We focus on the log-type kernels
as the most difficult for evaluation. Results of numerical tests highlight efficiency of
the CV-BEM-FMM developed.

2 Evaluation of influence coefficients to solve CV-
BIE for inhomogeneous media

The CV-BIE, specially derived for solving 2D potential and elasticity problems con-
cerning with blocky systems with multiple interfaces, cracks, inclusions and pores,
contain seven standard integrals [1], [2]. After representing the contour by boundary
elements, the integrals to be evaluated over a boundary element L. are:
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where f(1) is the density, z = x 4+ iy is the CV coordinate of a filed point, T is the
CV coordinate of an integration point, ds is the length increment of the integration
path, ki = In(££), k, = Z=. The recurrent analytical quadrature rules, serving for
efficient evaluation of the first six of them over straight and circular-arc, ordinary,
tip and multi-wedge boundary elements may be found in [1], [4].

Below we focus on evaluation of the last (log-type) integral in (1), which presents
the main difficulty when considering harmonic problems. They arise from the fact
that in these problems the density is real what complicates using the complex vari-
ables when deriving recurrence analytical formulae for curvilinear singular boundary
elements (see, e.g. [2], [5]). Having this integral evaluated, analytical quadrature
rules for singular and hypersingular integrals are obtained by direct differentiation
with respect to z, what in its turn serves for efficient evaluation of the remaining
integrals.

We consider two major forms of boundary elements, which allow one to represent
a smooth part of a contour by a curve with continuous tangent. These are (i) straight
and (ii) circular-arc elements. By linear transformation, integration over such an
element is reduced to that over a standard element.

(i) A straight element of the length 2l is transformed into the standard el-
ement along the real axis [-1,1] in the variable T’ by the transformation T =
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Tc + lexp(ixc)t’, where T¢ is the center of an element, ac is its angle with the
x-axis. For the points of a transformed straight element we have T/ = T/, where the
overbar denotes complex conjugation.

For a density f(1’) on a standard straight element, the recurrent quadrature rules
allow us using approximation of an arbitrary order, accounting, when appropriate,
for power-type asymptotics near end point T/ = 1. As a rule, it is sufficient to use
approximation of the second order. Then

3 2
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where fi (k = 1,2,3) are the nodal values of an approximated function, ¢y (j =
0,1,2) are the Lagrange coefficients. For an ordinary (non-singular) element, 3 = 0.
For a singular element, in numerical applications we assume 3 to be negative in
cases when the density enters the log-type integral: 3 = —«, with positive rational
a = m/n (m < n). When considering singular and hypersingular integrals, the
exponent  in the density may be positive rational itself: § = m/n (m <n). The
value of  for a particular problem is found by using the method suggested in [6]
(for details, see [7]).

(ii) A circular-arc element with the angle 28y and radius R is transformed into
the standard circular-arc element of unit radius, having the same angle and located
symmetrically with respect to the x-axis: T = Tc —iRexp(iaxc)t’. Herein, Tc is the
center of the arc and o is the angle of the tangent at the midpoint of the arc with
the x-axis. For points of the transformed circular-arc element we have v/ = 1/1'.
The approximation used on the standard circular-arc element is:

3 1
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where ¢y (j = —1,0, 1) are coefficients of the form-functions at the arc of unit radius
(see, e.g. [1]). The exponent B is prescribed similar to that for a straight ordinary
or singular element.

Below the approximations (2), (3), suggested for evaluation of influence coeffi-
cients, serve us for evaluation of multipoles, as well.

3 Building quad-tree for FMM

A detailed description of the FMM algorithm may be found in [3]. Here we present
the specific features of its numerical implementation adjusted to the particular forms
of the CV-BIE. They are developed to minimize computer time and memory expense.
Firstly, as all our computations are performed in the CV, the input data on the
geometry of boundary elements is prescribed in the CV, as well. Thus a CV array of
input data contains the CV coordinates of the central points of boundary elements.
These data are repeatedly employed in further operations. In particular, an element
is assumed to belong to a cell if its central point belongs to the cell.
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The input information for building the hierarchical quad-tree consists of (i) these
data on the coordinates of central points and (ii) a prescribed maximal number Ny qx
of elements, which may be in a leaf.

In our procedure, following the well-known general line (e.g.[3]), we avoid looking
through the entire input data matrix. Rather, at each level, only branches are taken
into consideration, and for each branch we consider only those points, which belong
to the branch. This tends to reduce memory and time expense. To reach this goal,
we use special renumeration of elements. The renumeration is performed as follows.
We consider a parent-branch at some level. For it, we have prescribed the total
number M of points belonging to it. The points are numerated in growing order
from N7 to N3, so that N, = N; + M — 1, and for each point, its number in the
starting global numeration is known.

The parent-cell is divided into four child-cells, numerated form 1 to 4. The M
points are analized to find the child, to which a point belongs. As a result, we
attribute each of M points to a child-cell and find the total number of points in each
of the children. Denote the total number of points in the k-th child My; obviously,
M = M; + M, + M3 + My. If My = 0, the corresponding child is empty and it
is excluded from further analysis. Points of the first non-empty child k; with the
total number of points My, obtain numbers from N; to Ny + My, — 1; points of
the second non-empty child k, (if it exists) with the total number of points My,
obtain numbers from N; 4+ My, to N;+ My, + My, —1, and so on. Note, that in the
new numeration, the first element of the first non-empty child-cell has the number
Ny, while the last element of the last non-empty child-cell obtains the number N.
Hence, the renumeration does not influence the numeration of elements in other cells
on a considered level and on all preceeding levels. As a result, for each child, which
becomes a parent on the next level, the situation is reproduced: we have prescribed
the total number of points belonging to it and numerated in growing order, which
does not influence the numeration of points in other cells on the considered and
preceeding levels. Finally, the totality of points in all leaves coincides with the
points of the input array; now these points are numbered in that order, in which
leaves appear in the dividing process.

In the course of dividing, we also save data on the number of a parent of a
non-empty cell, total number of leaves and branches at each level, CV coordinates
of centroids of non-empty cells, etc. These data are used later on for iterative
solving the system of the CV-BEM in subroutines performing standard translations
(Moment-to-Moment, Moment-to-Local and Local-to-Local) of the FMM (e.g. [3]).
At each of the iterations, the multipole moments of each of leaves should be known.
Their evaluation is performed by using analytical recurrence formulae, derived by
the authors and presented in the next section.

4 Evaluation of multipole moments

As mentioned, we focus on the integral with log-type kernel. When a collocation
point z is far away from a boundary element of integration L, the expansion of the
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potential G(T,z) = —21—7[ In |T — z| into the Taylor series, yields:
U [ o ds~ re( 5 0 1 f(1)d 4
g | i zds & R 3 0z w0 [ Lu(r - wif(mas ), ()
Le

where Ty is the global CV coordinate of the center of that leaf, to which the element
L. belongs, z is the CV coordinate of a collocation point, R4 is the prescribed
maximal degree of multipole moments, which are kept in multipole expansions. The
functions O4(z — To) and I4(T — To) are defined as (e.g. [3]):

(g—1)!

Oo(z — o) = —In(z —10), Oqlz—1T0) = (z— 7o)

for g > 1,
(T— 7o)

I4(t—10) = 4l

for q > 0.

An integral with the integrand I,(T—To)f(T), containing the g-th degree of T—1o,
is called the multipole moment of order q. To evaluate the moments, we use the
same transformations of coordinates, which have been employed when evaluating
the influence coefficients.

For a straight boundary element, with the density function (2), we obtain:
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For a circular-arc element with the density function (3), we have:
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In both cases, T} is the local CV coordinate of the leaf centroid.
Denote M), a typical integral on the right-hand side of equations (5) and (6),

b

M), = JW(TI)T'j(T' —1})9dt, (7)
a

Herein, w(t’) is a real weight function, accounting for behaviour of the density near

the end point b; for an ordinary straight or circular-arc element, w(t’) = 1; for a

singular straight element (b = —a = 1), w(t') = (1 —1')P; for a singular circular-
arc element (b = a=' = €¥), w(1’) =Re((e*®° — 1')?). When using three-node
elements, we consider j = 0,1,2 for a straight element and j = —2,—1,0 for a

circular-arc element. As (t/ —14)9 = (' — )9 (v’ — 1}), equation (7) yields the
recurrence formula:

M), =M — M), (8)
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Although equation (8) may be employed for evaluation of all the moments, it does
not provide robust procedures for a straight element, because it requires using all
the terms Mé"Lq when calculating Mﬁ with g running from 1 to Rq. Meanwhile,
as shown below, we need to use equation (8) when considering negative degrees
j = —1,—2, which appear in moments for circular-arc elements.

An alternative, more convenient recurrence equation for non-negative degrees j
(j = 0,1,2) employs binomial representation of T, written as T = [(T' — 1}) + Tp).
Denote

b
Tq = JW(TI)(TI—T(I))da'. 9)

In many cases these coefficients are promptly evaluated recurrently in an ana-
lytical form. Then for j =0, 1,2 we obtain:

M(c)] :Tq, Ml] :Tq+1 + TéTq, Mé :Tq+2 + 2T6Tq+] + T(/)Z,i/q. (].0)
Equations (9) and (10) provide efficient evaluation of moments for straight ele-
ments.

For circular-arc elements, we firstly find

b b
1
M, :Jw(’c’)ld’r’, M, :J'w(’c’)ﬁd’r’. (11)

,-[-I

Then all higher-order moments are found recurrently by using (8), ( 9):

M =T, M =T —uM, M =M - oM 2, (12)

Equations (9), (11), (12) provide evaluation of moments for circular-arc elements.

5 Numerical experiments

We used exact analytical formulae for integrals over a closed or open circular contour
(see, e.g. [1]) to (i) check that the derived formulae and developed procedures were
correct, (ii) study the influence of the highest order Ry of moments employed on the
accuracy of calculations. We considered both log-type and singular integrals.

For a field point outside a closed contour, the singular integral with constant
density is zero. Application of FMM and the moments of the form (5) and (6) gave
this result with high accuracy. Specifically, when approximating the contour by
four straight or circular-arc boundary elements, under the assumption that the field
point is located at a distance 0.057t from the contour, the evaluated value was 10~
for both types of elements. Approximations by a larger number of elements do not
affect this accuracy notably.

In another example, we considered an open contour represented by the circular
crack with the angle 26, = %, radius R = 0.025, and the center of the circle at the
point Tc = 0.3(1 +1). The length of the crack is L = 2R8y = ©tR/3. The distance
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Table 1: Relative error of CV-BEM-FMM for various relative distance of field point
and for various number of moments

Mic, =0.0 Mse, B =0.0
R, 5 18 [ 12 16| 5 [ 8 | 12 [ 16
r=1/3
relative error | 3E-5 | 2E-5 | 7E-7 | 4E-8 || 1E-2 | 6E-4 | 4E-5 | 2E-6
r=1/9
relative error | 1E-6 | 1E-8 | 1E-8 | 1E-8 || 1E-4 | 3E-7 | 1E-10 | 1E-13
r=1/19
relative error | 1E-7 [ 1E-8 [ 1E-8 | 1E-8 || 2E-6 | 1E-9 | 1E-12 | 3E-13

from the center of the crack to the field point is R + nL with n = 1(3,9). The
relative distance is 1 = ﬁ. Table 1 contains the obtained data on the accuracy of
the CV-FMM-BEM for various r and Ry.

The data of Table 1 show that, as could be expected, the accuracy grows with
growing distance and the number of moments held in calculations. It can be also seen
that to the accuracy commonly provided by the conventional CV-BEM in calcula-
tions with double precision (5-6 significant digits, at most), for r =1/3 (1/9, 1/19),
it is sufficient to hold the moments of the degree Ry =5 (4, 3) and Ry =12 (6, 4),
respectively, for ordinary log-type and singular-type circular-arc element.
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