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Mathematical modeling of a fluid driven fracture, first
discussed in [1], is of prime significance for hydraulic fracturing.
Models developed to date employ the integral form of global
mass balance (e.g. [2 - 5]). We demonstrate that using the local
form, called the speed equation, shows specific features of the
problem: it is ill-posed when considered as a boundary value
(BV) problem. The equation also provides a means to regularize
the problem and solve it efficiently.

Initially, we show that the speed equation is fundamental in
the sense that it does not depend on a particular shear law of a
liquid. When applied to a narrow channel between closely
located boundaries, the mass conservation equation for an
incompressible liquid is
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where §; is the middle surface, w is the height (opening) of the

channel, L,(¢) is the contour of the liquid front at the time ¢, x4 is

a point on the front, v, is the normal to L; component of the
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fluid particle velocity averaged across the height. Note that in

(1), the average particle velocity v, also represents the speed of
the front propagation. As ¢4 (Xx) = Wy (X5 )V, (X5 ) 1S the flux
through the front cross-section, we obtain the fundamental
equation which gives the front velocity as a function of the flux
and opening:
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Use the Reynolds equation for flow of viscous incompressible

liquid in a narrow channel:
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where D is a prescribed function or operator; p is the pressure,
averaged through the cross-section; v; (i = 1,2) are components

of the average velocity of liquid particles in a channel cross

section; the Cartesian coordinates xj, xp are located in the

fracture plane. Non opening fracture along a crack trajectory is
assumed as an initial condition when studying hydraulic fracture.

The boundary condition on the liquid front is the condition of the

prescribed flux g at a part L, and of the prescribed pressure p at
the remaining part L, of the contour L;:

gn(x)=qo(x) xeL,; px)=po(x) xeL,. (4
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The opening in (3) being unknown, we need elasticity
equation connecting the opening w and pressure p. Additionally,

the criterion of linear fracture mechanics is imposed: K; = K¢,
where K is the stress intensity factor, K 1s its critical value.

In view of (2), prescribing the boundary conditions (4) means
that there are two conditions at the points of a liquid front. This
leads to difficulties common to over-determined problems [7-9]
when solving the problem numerically, because the boundary is
fixed on iteration. To find a means to overcome the difficulties,
we study the Nordgren problem [2]. The Nordgren model
considers straight fracture along the x-axis (Fig.) with the
assumption that the pressure p is proportional to the opening w.
Neglecting liquid leak-off and normalizing the variables, the
equation (3) reads [2]:
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The boundary conditions include the prescribed normalized

flux g at the inlet x = 0:
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and zero opening (and flux) at the liquid front x = x,, which

coincides with the crack tip:

w(xg)=0. (7)
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The opening is assumed positive for 0< x < x,. We shall also

use the speed equation (2) which becomes:
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The problem being self-similar, the solution is represented as
= tl/sw(ﬁ), where & = xt™3 5o that x=§t4/5 , Xy = E_,*t4/5,

Vi =dxy [ dt =O.8§*t_1/ 5, Es is the automodel coordinate of

the liquid front depending only on the prescribed flux gg. Then

the equation (5) becomes the ordinary differential equation:
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where  y(&)=w3(), a(y,dy/dE,E)=(dy/d+0.65)/(3y).

The boundary conditions (6) and (7) read:

dy q0
= ~0.75, 20— (10)
3/y(0)
y(€)=0, (11)

and the speed equation (8) becomes:

@y =—0.6E,. (12)

It is easily shown that Cj =(q0)0'6/<§* and Cy= y(O)/ﬁ%

are constants independent of the flux g . Since &4 = (q0)0‘6 /Cy,
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we may prescribe g or &, as convenient. A particular value of
qo or &4 may also be conveniently taken.

We can now fix &,. Then according to (11), (12), at a fixed
point &,, we have prescribed both the function y and its
derivative dy/dg. Thus, for the equation of the second order (9)
we have a Cauchy problem. Its solution defines y(0) and

dy!dg £=0 and consequently the flux gy at E=0. A small error

when prescribing ¢gg in (10) excludes the existence of the
solution of the BV problem (9)-(11). By definition [7], the BV
problem (9)-(11) is ill-posed and needs regularization [8, 9].
Conversely, the Cauchy problem (9), (11), (12) is well-posed
and leads to a bench-mark solution. We obtained the solution by
applying the fourth order Runge-Kutta scheme to the system of
two differential equations in unknowns  y{(§)= y(§),
y2 (&) =dyl§, equivalent to (9). The constants C, and C
evaluated with seven significant digits are: C, =0.7570913,
Co = 0.5820636. For the value gy =2/m, used by Nordgren
[2], we have &4 =1.0073486, w(0)=0.8390285 against the
values &, =1.01, y(0)=0.83 given by this author with the
accuracy of about one percent. Bench-mark values of the

function y(§) and its derivative served us to evaluate the
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accuracy of further calculations obtained by using various
approaches.

We could see that when solving the BV problem (9)-(11) it is
impossible to obtain more than two correct digits. What is
notable, this level of accuracy was obtained even when using a
rough mesh with only one-hundred nodes. This implies that using
a rough mesh may serve to regularize the problem when high
accuracy is not needed. For fine meshes, we could see strong
deterioration of the results near the liquid front § =&,

Likewise, our attempts to accurately solve the problem (5)-(7)

also failed when wusing time steps with finite difference

approximations for 92w/dx% and dw/9x at a step. By no means
could we have three correct digits, and the results always
strongly deteriorated near the liquid front x = x4 (¢). Again, fine
meshes did not improve the accuracy as compared with a rough
mesh having the step Ag= Ax/x,=0.01.

The experiments confirm that the ill-posed problem under
consideration cannot be solved accurately without regularization.
A regularization method is suggested by the conditions (11),
(12). Indeed, they yield the approximate equation
y =0.6E4(Ex — &) near the front. Hence, instead of prescribing a

boundary condition at the front £=C&,, we impose it at a point

és =&, (1—¢) at a small relative distance € from the front:
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y(€e)=0.682¢. (13)

The BV problem (9), (10), (13) is well-posed; it may be
solved by finite differences. It appears that with &€ = 107, 10,
the results for the steps Ac=AE/E, = 107, 10*, 107, 10°
coincided with those provided by the bench-mark solution. The
results are stable if € and Ag are not simultaneously too small
(e,Ac>107). However, as expected, the results deteriorate when

both € and A¢ are too small; they become absolutely wrong

when € =A¢= 10_6. We could also see that as € increases, the
accuracy decreases and it actually does not depend on the step if
the latter is small enough. In particular, for the step Ag = 0.1, the
accuracy is one percent for € = 0.01, and the results stay at the
same accuracy level even for € = 107

The suggested regularization consists in using the speed
equation together with a prescribed boundary condition to
formulate the boundary condition at a small relative distance €
behind the front rather than on the front itself. We call such an
approach € -regularization. It is applicable in general 1D and 2D
cases when a self-similar formulation is not available or is not
used. To illustrate, we employed the € - regularization for the

starting equation (5) under the boundary conditions (6), (7). In

terms of the variable Y = w3, the prescribed condition (7) and the
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speed equation (8) yield Y (x,t)=0.75x4 (£)vs (t)[1 — x/x4(2)] at

points close to the front. Hence, the boundary condition at a point
X¢ = x4 (1 —€) with the relative distance € from the front is:
Y (xg,1) =0.75x4 (1) v ()€ . (14)

Thus, the regularized problem consists in solving (5) under
zero-opening initial condition and the boundary conditions (6)
and (14). Numerical experiments have shown that the €-
regularization removes the difficulties and provides accurate
results.

The conclusions of the paper are as follows: (i) the derived
speed equation may serve for tracing hydraulic fracture by
methods of the theory of propagating surfaces; (ii) when
simulating hydraulic fracture numerically, it is useful to employ
the € - regularization consisting in prescribing a boundary
condition at a small relative distance € behind the front; (iii) the
method provides an efficient means for solving problems of
hydraulic fracture.
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Figure subscription

Fig. Scheme of the problem on hydraulic fracture propagation



