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Mathematical modeling of a fluid driven fracture, first 

discussed in [1], is of prime significance for hydraulic fracturing. 

Models developed to date employ the integral form of global 

mass balance (e.g. [2 - 5]). We demonstrate that using the local 

form, called the speed equation, shows specific features of the 

problem: it is ill-posed when considered as a boundary value 

(BV) problem. The equation also provides a means to regularize 

the problem and solve it efficiently.  

Initially, we show that the speed equation is fundamental in 

the sense that it does not depend on a particular shear law of a 

liquid. When applied to a narrow channel between closely 

located boundaries, the mass conservation equation for an 

incompressible liquid is     
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where lS  is the middle surface, w is the height (opening) of the 

channel, Ll(t) is the contour of the liquid front at the time t, ∗∗∗∗x  is 

a point on the front, ∗∗∗∗nv  is the normal to Ll component of the 
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fluid particle velocity averaged across the height. Note that in 

(1), the average particle velocity ∗∗∗∗nv  also represents the speed of 

the front propagation. As )()()( ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ==== xvxwxq nn  is the flux 

through the front cross-section, we obtain the fundamental 

equation which gives the front velocity as a function of the flux 

and opening:  
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Use the Reynolds equation for flow of viscous incompressible 

liquid in a narrow channel:  
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where D is a prescribed function or operator; p is the pressure, 

averaged through the cross-section; iv  (i = 1,2) are components 

of the average velocity of liquid particles in a channel cross 

section; the Cartesian coordinates 1x , 2x  are located in the 

fracture plane. Non opening fracture along a crack trajectory is 

assumed as an initial condition when studying hydraulic fracture. 

The boundary condition on the liquid front is the condition of the 

prescribed flux q0 at a part Lq and of the prescribed pressure p0 at 

the remaining part Lp of the contour Ll:  

   )()( 0 xx qqn ====    qL∈∈∈∈x ;     )()( 0 xx pp ====     pL∈∈∈∈x . (4) 
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The opening in (3) being unknown, we need elasticity 

equation connecting the opening w and pressure p. Additionally, 

the criterion of linear fracture mechanics is imposed: ICI KK ==== , 

where IK  is the stress intensity factor, ICK  is its critical value.  

In view of (2), prescribing the boundary conditions (4) means 

that there are two conditions at the points of a liquid front. This 

leads to difficulties common to over-determined problems [7-9] 

when solving the problem numerically, because the boundary is 

fixed on iteration. To find a means to overcome the difficulties, 

we study the Nordgren problem [2]. The Nordgren model 

considers straight fracture along the x-axis (Fig.) with the 

assumption that the pressure p is proportional to the opening w. 

Neglecting liquid leak-off and normalizing the variables, the 

equation (3) reads [2]:  
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The boundary conditions include the prescribed normalized 

flux q0 at the inlet x = 0: 
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and zero opening (and flux) at the liquid front ∗∗∗∗==== xx , which 

coincides with the crack tip:  

   0)( ====∗∗∗∗xw . (7) 
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The opening is assumed positive for ∗∗∗∗<<<<≤≤≤≤ xx0 . We shall also 

use the speed equation (2) which becomes:  
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The problem being self-similar, the solution is represented as 

)(5/1 ξψtw ==== , where 5/4−−−−==== xtξ , so that 5/4
tx ξ==== , 5/4

tx ∗∗∗∗∗∗∗∗ ==== ξ , 

dtdxv /∗∗∗∗∗∗∗∗ ====  5/18.0 −−−−
∗∗∗∗==== tξ , ∗∗∗∗ξ  is the automodel coordinate of 

the liquid front depending only on the prescribed flux q0. Then 

the equation (5) becomes the ordinary differential equation:  
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where )()( 3 ξψξ ====y , )3/()6.0/(),/,( yddyddyya ξξξξ ++++==== . 

The boundary conditions (6) and (7) read:  
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and the speed equation (8) becomes:  
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It is easily shown that ∗∗∗∗∗∗∗∗ ==== ξ/)( 6.0
0qC  and 2

0 /)0( ∗∗∗∗==== ξyC  

are constants independent of the flux 0q . Since ∗∗∗∗∗∗∗∗ ==== Cq /)( 6.0
0ξ , 
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we may prescribe 0q  or ∗∗∗∗ξ , as convenient. A particular value of 

0q  or ∗∗∗∗ξ  may also be conveniently taken.  

We can now fix ∗∗∗∗ξ . Then according to (11), (12), at a fixed 

point ∗∗∗∗ξ , we have prescribed both the function y and its 

derivative ξddy / . Thus, for the equation of the second order (9) 

we have a Cauchy problem. Its solution defines y(0) and 

0
/

====ξ
ξddy  and consequently the flux 0q  at 0====ξ . A small error 

when prescribing 0q  in (10) excludes the existence of the 

solution of the BV problem (9)-(11). By definition [7], the BV 

problem (9)-(11) is ill-posed and needs regularization [8, 9].  

Conversely, the Cauchy problem (9), (11), (12) is well-posed 

and leads to a bench-mark solution. We obtained the solution by 

applying the fourth order Runge-Kutta scheme to the system of 

two differential equations in unknowns )()(1 ξξ yy ==== , 

ξξ dyly ====)(2 , equivalent to (9). The constants ∗∗∗∗C  and 0C  

evaluated with seven significant digits are: 7570913.0====∗∗∗∗C , 

====0C  5820636.0 . For the value π/20 ====q , used by Nordgren 

[2], we have 0073486.1====∗∗∗∗ξ , 8390285.0)0( ====ψ  against the 

values 01.1====∗∗∗∗ξ , 83.0)0( ====ψ  given by this author with the 

accuracy of about one percent. Bench-mark values of the 

function )(ξy  and its derivative served us to evaluate the 
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accuracy of further calculations obtained by using various 

approaches.  

We could see that when solving the BV problem (9)-(11) it is 

impossible to obtain more than two correct digits. What is 

notable, this level of accuracy was obtained even when using a 

rough mesh with only one-hundred nodes. This implies that using 

a rough mesh may serve to regularize the problem when high 

accuracy is not needed. For fine meshes, we could see strong 

deterioration of the results near the liquid front ∗∗∗∗==== ξξ . 

Likewise, our attempts to accurately solve the problem (5)-(7) 

also failed when using time steps with finite difference 

approximations for 22 / xw ∂∂∂∂∂∂∂∂  and xw ∂∂∂∂∂∂∂∂ /  at a step. By no means 

could we have three correct digits, and the results always 

strongly deteriorated near the liquid front )(txx ∗∗∗∗==== . Again, fine 

meshes did not improve the accuracy as compared with a rough 

mesh having the step ∗∗∗∗==== xx /∆ς∆ = 0.01.  

The experiments confirm that the ill-posed problem under 

consideration cannot be solved accurately without regularization. 

A regularization method is suggested by the conditions (11), 

(12). Indeed, they yield the approximate equation 

)(6.0 ξξξ −−−−≈≈≈≈ ∗∗∗∗∗∗∗∗y  near the front. Hence, instead of prescribing a 

boundary condition at the front ∗∗∗∗==== ξξ , we  impose it at a point 

)1( εξξε −−−−==== ∗∗∗∗  at a small relative distance ε  from the front:  
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The BV problem (9), (10), (13) is well-posed; it may be 

solved by finite differences. It appears that with ε  = 10
-3

, 10
-4

, 

the results for the steps ∗∗∗∗==== ξξ∆ς∆ /  = 10
-3

, 10
-4

, 10
-5

, 10
-6

 

coincided with those provided by the bench-mark solution. The 

results are stable if ε  and ς∆  are not simultaneously too small 

(ε , ς∆ >10
-5

). However, as expected, the results deteriorate when 

both ε  and ς∆  are too small; they become absolutely wrong 

when 6
10

−−−−======== ς∆ε . We could also see that as ε  increases, the 

accuracy decreases and it actually does not depend on the step if 

the latter is small enough. In particular, for the step ς∆  = 0.1, the 

accuracy is one percent for ε  = 0.01, and the results stay at the 

same accuracy level even for ε  = 10
-9

.  

The suggested regularization consists in using the speed 

equation together with a prescribed boundary condition to 

formulate the boundary condition at a small relative distance ε  

behind the front rather than on the front itself. We call such an 

approach ε -regularization. It is applicable in general 1D and 2D 

cases when a self-similar formulation is not available or is not 

used. To illustrate, we employed the ε  - regularization for the 

starting equation (5) under the boundary conditions (6), (7). In 

terms of the variable Y = w
3
, the prescribed condition (7) and the 
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speed equation (8) yield )](/1)[()(75.0),( txxtvtxtxY ∗∗∗∗∗∗∗∗∗∗∗∗ −−−−≈≈≈≈  at 

points close to the front. Hence, the boundary condition at a point 

)1( εε −−−−==== ∗∗∗∗xx  with the relative distance ε  from the front is:  

   εε )()(75.0),( tvtxtxY ∗∗∗∗∗∗∗∗==== . (14) 

Thus, the regularized problem consists in solving (5) under 

zero-opening initial condition and the boundary conditions (6) 

and (14). Numerical experiments have shown that the ε -

regularization removes the difficulties and provides accurate 

results.  

The conclusions of the paper are as follows: (i) the derived 

speed equation may serve for tracing hydraulic fracture by 

methods of the theory of propagating surfaces; (ii) when 

simulating hydraulic fracture numerically, it is useful to employ 

the ε  - regularization consisting in prescribing a boundary 

condition at a small relative distance ε  behind the front; (iii) the 

method provides an efficient means for solving problems of 

hydraulic fracture.  
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Figure subscription  

Fig. Scheme of the problem on hydraulic fracture propagation  
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