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Abstract

The paper concerns with numerical modeling of hydraulic fracture. It is
shown that proper using of the mass balance leads to the local speed equa-
tion, which may serve for employing well-developed methods of the theory
of propagating interfaces. It appears that existence of the speed equation,
which is additional to a prescribed boundary condition at the liquid front,
can make a problem ill-posed and complicate numerical simulation. It is also
shown how the very source of the difficulty gives the key to overcome it. To
this end, a method of ε-regularization is suggested. It consists in using the
speed equation together with a prescribed boundary condition to formulate
a new boundary condition at a small distance behind the front rather than
on the front itself. Specially designed numerical experiments reveal the pecu-
liarities of the problem. They evidently show (i) strong deterioration of the
solution near the liquid front if the regularization is not employed, (ii) high
accuracy and stability of the solution obtained by using the suggested regu-
larization. We conclude that the ε-regularization presents an efficient means
for numerical simulation of hydraulic fracturing.

1 Introduction

Hydraulic fracturing is widely used with the purpose to increase surface to or from
which a fluid flows in rock. It is applied to enhance oil, gas and thermal heat produc-
tion, to control rock pressure, to provide efficient CO2 sequestration and to isolate
contaminants. A similar process of fracturing occurs in natural conditions when
pressurized magma fractures earth crust leading to formation of veins. Numerous
papers have been published on mathematical modeling of hydraulic fracture starting
from the works [1], [2], [3], [4],[5]. To date, authors have employed global mass bal-
ance to trace the liquid front propagation (e.g. [6], [7], [8], [9], [10]). In this paper,
we derive and use the local consequence of the balance. It gives us general equa-
tion specifying the speed function for problems of hydraulic fracturing. The speed
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function, being the basis of the well-developed theory of propagating interfaces, it
may serve for employing level set methods and fast marching methods for hydraulic
fracture simulation. Its employing also shows that when we fix the liquid contour
in iterations of numerical simulation, a problem may become over-determined and
consequently ill-posed. A way to overcome the difficulty and to obtain accurate
and stable results follows from the very source of the difficulty. The speed equation
together with a prescribed boundary condition gives us an asymptotic equation,
which may be efficiently used for the problem regularization by imposing a new
boundary condition at a small distance behind the front rather than on the front
itself. Results of numerical experiments demonstrate the computational features of
the problem and the efficiency of the regularization method.

2 Speed function and speed equation for hy-

draulic fracturing

For flow of incompressible liquid in a narrow channel, the global mass balance reads

dVe

dt
=

∫

S(t)

∂w

∂t
dS +

∫

L(t)

q∗(x∗)dL,

where Ve is the volume of liquid entering/leaving the channel from/to external
sources/sinks; S(t) is the middle surface of the channel; w is its width (opening);
L(t) is the contour of the liquid at the time t; x∗ is a point on the liquid front;
qn∗(x∗) = w∗vn∗ is the total flux through the front cross section with the external
normal n to the liquid front L; w∗ = w(x∗); vn∗ = dx∗/dt is the normal component
of the front velocity. From the expression for qn∗ we have

vn∗ =
qn∗
w∗

. (1)

In cases when a lag between the liquid front and the crack tip is neglected (e.g.
[5], [6], [7], [8], [9], [10]), both qn∗ and w∗ are zero at the liquid front, which in these
cases coincides with the tip of a crack where the flow occurs. Then the r. h. s. of
(1) becomes uncertainty 0

0
, and equation (1) takes the form:

vn∗ = lim
x!x∗

qn∗
w∗

. (2)

The limit on the r. h. s. of (2) should be finite to exclude instant fracture
propagation with infinite velocity.

The flow of viscous incompressible liquid in a narrow channel is described by
partial differential equations (PDE) by Poiseuille and Reynolds. The Poiseuille
equation connects the flux q through a cross-section with the pressure gradient as

q = −D(w,p)gradp, (3)

where D(w,p) is a prescribed function or operator, p is the pressure. Substitution
of (3) into the continuity equation gives the Reynolds equation:

∂w

∂t
− div[D(w,p)gradp] − qe = 0, (4)
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where qe is the intensity of external sources per unit area of the middle surface of the
channel. Note that the PDE (3) and (4) contain the flux q through a cross-section
rather than the particle velocity v. The latter enters only the speed equation (1)
or its limit form (2). This implies that the r.h.s. of (1) defines the so-called speed
function [11] for problems of hydraulic fracturing. The speed function may serve to
employ the well-established theory of propagating interfaces and methods developed
in this theory, such as level set methods and fast marching methods, to simulate
hydraulic fracturing.

Using (3) in (1) gives the explicit form of the speed function of hydraulic fracture:

vn∗ = −
1

w∗
D(w,p)

∂p

∂n
bx=x∗ . (5)

The speed equation (1) or its explicit form (5) is additional to a boundary con-
dition (BC) imposed at the liquid front by considering a physical state ahead of the
front. In cases when a lag between the liquid front and the crack tip is taken into
account, the pressure p0(x∗) is commonly prescribed (e. g. [12]):

p(x∗) = p0(x∗). (6)

In cases, when the lag is neglected, the opening at the crack tip is set zero:

w(x∗) = 0. (7)

The opening being unknown, a solid mechanics equation is used to connect it
with the pressure. Besides, a fracture mechanics condition is imposed to let the
fracture surface change in time. Because of using these equations, the condition
(7), like (6), actually involves the pressure. For certainty, in further discussion, we
consider the BC (6).

In view of (6) and (5), we have two rather than one BC for the PDE (4) at the
points of the liquid front. The first of them is the prescribed BC (6), while the second
is the speed equation (5). Note now that the operator div[D(w,p)gradp] is elliptic
in spatial coordinates. Thus, when solving numerically a problem involving (4) under
a fixed contour L(t) at a time step, we have a Cauchy (initial value) problem for
an elliptic operator. Consequently, a problem may appear ill-posed [13], [14]. This
strongly complicates obtaining accurate and stable numerical results. To overcome
the difficulty, it is reasonable to have an appropriate method of regularization.

3 Regularization method

We suggest the regularization method based on employing the very cause of the
difficulty. Specifically, the equations (5) and (6) are used together to formulate a
new BC at a small distance behind the front rather than on the front itself.

Consider a point x∗ at the front and introduce the local Cartesian coordinates
x′1O

′x′2 with the origin O′ at the point x∗, the axis x′1 opposite to the direction of the
normal to the front and the axis x′2 in the tangent direction. The flux q is normal to
the front, hence, its tangential component is zero, while according to (3) its normal



On Numerical Simulation of Hydraulic Fracturing 5

component is qn∗ = D(w,p) @p
@x′
1

. Then (5) yields the approximate equation for

points at a vicinity of the front:

1

w
D(w,p)

∂p

∂x′1
≈ v∗, (8)

where v∗ = dx∗/dt is the absolute value of the front velocity. Integration of (8) and
accounting for (6) gives:

∫p
p0

1

w
D(w,p)dp ≈ v∗x′1. (9)

By using (9) we may impose the BC at a small distance x′1 = ε′ behind the front:

∫p"
p0

1

w
D(w,p)dp = v∗ε′, (10)

where p" is the pressure at the point ε′. Thus instead of using the BC (6) at the
front, we suggest to employ the regularized condition (10) behind the front. It is
obtained by integrating the speed equation in the local coordinates and by using a
prescribed BC when evaluating the lower limit of the integral. Besides, in numerical
calculations, taking into account that the distance ε′ is small, the equation (8) is
written as the equality at the point ε′:

1

w
D(w,p)

∂p

∂x′1
bx′
1

="′= v∗. (11)

Equation (11) may serve for iterations in v∗ when employing finite differences to
numerically simulate fracture propagation.

4 Numerical tests without and with regulariza-

tion

We tested the regularization method by revisiting the Nordgren problem [5] in the
case when there is no leak-off (qe = 0). In the model used by Nordgren, 1-D flow
of incompressible Newtonian liquid occurs along the interval [0, x∗(t)] of the x-axis;
the pressure p is proportional to the opening w and the lag is zero, so that both
the opening and the flux are zero at the liquid front (the pressure is also zero at the
front because it is proportional to the opening). There is a prescribed flux q0 at the
inlet x = 0. After normalizing variables, the mathematical problem is formulated
as follows [5]: we need to solve the Reynolds PDE, which takes the form

∂2w4

∂x2
−

∂w

∂t
= 0 (12)

under the boundary conditions at the inlet

∂w4

∂x
bx=0= q0 (13)
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and at the liquid front

w(x∗, t) = 0. (14)

The opening w(x, t) is assumed positive behind the front and zero ahead of it:

w(x, t) > 0 for 0 ≤ x < x∗; w(x, t) = 0 for x > x∗. (15)

Note that the last equations actually serve to find the front velocity as a part of
the solution.

At the initial moment t = 0, the opening is zero along the entire x-axis:

w(x, 0) = 0. (16)

Nordgren solved the problem (12)-(16) by using the Crank-Nicolson scheme and
linear approximation for w4. The results obtained are given in [5] to the accuracy
of some one percent. Our attempts to reach higher accuracy without regularization
failed: by no means could we obtain more than two significant digits. Using various
variables (w, w3, w4) and employing various formulations of the problem, including
the self-similar formulation, made not good. Remarkable is that when using fine
meshes, the results always strongly deteriorated near the liquid front. This evidently
confirms the theoretical proposition that the problem is ill-posed and needs proper
regularization to get accurate and stable numerical results. As noted above, the
reason is that the speed equation is additional to a prescribed boundary condition
at the liquid front.

In the case considered the speed equation reads:

−
4

3

∂w3

∂x
bx=x∗= v∗(t). (17)

Following the line sketched in the previous section, we use (14) and (17) together
to impose the boundary condition at a small distance ε′ behind the front:

w3bx=x∗-"′=
3

4
v∗(t)ε′. (18)

Equation (11), serving for iterations in v∗ at a time step, becomes:

∂w3

∂x
bx=x∗-"′= −

3

4
v∗(t). (19)

We solved the regularized problem (12), (13), (18) by Crank-Nicolson method
with iterations in non-linear terms and in v∗ (according to (19)). In contrast with
the solution without regularization, the results obtained with regularization are
accurate and stable. Specifically, we have at least five correct significant digits
when taking the relative distance ε = ε′/x∗ from the front as small as 10-3, 10-4,
the spatial step ∆ζ = ∆x/x∗ in the range 10-6 ≤ ∆ζ ≤ 10-3 and sufficiently
small time step (∆t < t0, where t0 is the starting time). No signs of instability
were observed in specially designed numerical experiments with the number of time
steps exceeding 20000. The method deteriorated only when the spatial step ∆ζ and
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the regularization parameter ε were very small simultaneously : ∆ζ = ε = 10-6.
Actually, in this case, to the employed accuracy of double precision, there is no
regularization (ε is too small), while the mesh is very fine (∆ζ is too small); according
to the discussion above, calculations without regularization deteriorate when using
very fine meshes. The time expense on a conventional computer never exceeded 15
seconds. We conclude that the suggested regularization is efficient.
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