XXXX Summer School ADVANCED PROBLEMS IN MECHANICS St. Petersburg, Russia 2012

Evaluation of temporal derivative for propagating front of hydraulic fracture

Dawid Jaworski, Alexander Linkov, Liliana Rybarska-Rusinek

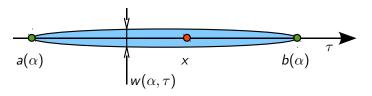
Rzeszow University of Technology, Poland

The support of the EU Marie Curie IAPP transfer of knowledge programme is gratefully acknowledged.

HYDROFRAC; grant #251475.

Hydraulic Fracturing

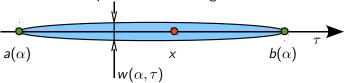
The work concerns with the problem of hydraulic fracture propagating in time.



 α is the time (parameter).

Problem formulation

2D problem for a straight crack.



The classical elasticity equation connecting the net-pressure p and the opening w is:

$$p(\alpha, x) = -\frac{E}{4\pi(1 - \nu^2)} \int_{a(\alpha)}^{b(\alpha)} \frac{\partial w(\alpha, \tau)}{\partial \tau} \frac{d\tau}{\tau - x}, \qquad a \le x \le b,$$

where E is the elasticity modulus, ν is the Poisson's ratio of the rock mass.

Problem formulation

A corresponding hypersingular form

$$p(\alpha,x) = -\frac{E}{4\pi(1-\nu^2)} \int_{a(\alpha)}^{b(\alpha)} \frac{w(\alpha,\tau)d\tau}{(\tau-x)^2}.$$

The rate of the pressure change $\frac{\partial}{\partial \alpha}p(\alpha,x)$ is a characteristic strongly dependent on the fluid injection regime.

The integral on the r. h. s. is hypersingular.

The question is: how to differentiate it with respect to the parameter α (time)?

We need to extend the theory to obtain the differentiation rule.

Complex variable hypersingular integrals

The CV hypersingular integral

$$a = \tau(\gamma_a)$$
 $t = \tau(\gamma_t)$ $b = \tau(\gamma_b)$

$$I_k(t) = \int_a^b \frac{g(\tau)}{(\tau - t)^k} d\tau$$
, where $k \geqslant 1$,

defined in accordance with the general theory refers to moment, it then refers to problems in which the boundary of a surface is fixed.

See e.g. Linkov A. M., Boundary Integral Equations in Elasticity Theory,
Dordrecht, Kluwer Academic Publishers, 2002.

Special cases of CVHI

■ For k = 1 we have Cauchy integral

$$I_1(t) = \int\limits_a^b rac{g(au)}{ au - t} d au,$$

■ For k = 2 Hadamard integral

$$I_2(t) = \int_a^b \frac{g(\tau)}{(\tau - t)^2} d\tau.$$

Problems to be discussed

- concept of the CVHI with the density and limits of integration depending on a parameter,
- extension to a density with derivative(s) having power-type singularity at arc tips.

The definition of the CVHI of order k with a parameter

$$I_k(\alpha,t) = \int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau.$$

- ab is an open, smooth curve (arc) in the complex plane,
- $\gamma_a(\alpha), \gamma_b(\alpha)$ have Holder continuous derivatives,
- the density $g(\alpha, \tau)$ has Holder continuous $\frac{\partial^k g(\alpha, \tau)}{\partial \tau^k}$ and also Holder continuous $\frac{\partial g(\alpha, \tau)}{\partial \alpha}$.

$$t(\gamma) = x(\gamma) + iy(\gamma)$$

$$t = \tau(\gamma_t)$$

$$t(\alpha) = \tau(\gamma_b(\alpha))$$

Basic properties

Two useful formulae:

Extended Newton-Leibnitz formula:

$$\int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau = J_g(\alpha,b) - J_g(\alpha,a) + \frac{i\pi}{k!} g_t^{(k-1)}(\alpha,t),$$

where $J_{\mathbf{g}}(\alpha, \tau)$ is an antiderivative of the integrand $\frac{\mathbf{g}(\alpha, \tau)}{(\tau - t)^k}$.

■ The regularization formula for $k \ge 2$:

$$\frac{d}{dt}\int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^{k-1}} d\tau = (k-1)\int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau.$$

Differentiation of a CVHI with respect to a parameter

Theorem

The derivative of a hypersingular integral

$$I_k(\alpha,t) = \int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau$$

with respect to the parameter α may be evaluated as

$$\frac{\partial I_k(\alpha,t)}{\partial \alpha} = \int_{a(\alpha)}^{b(\alpha)} \frac{\partial g(\alpha,\tau)}{\partial \alpha} \frac{d\tau}{(\tau-t)^k} + \frac{g(\alpha,b)}{(b-t)^k} \frac{db}{d\alpha} - \frac{g(\alpha,a)}{(a-t)^k} \frac{da}{d\alpha}.$$

We can see that the theorem is the same as the well known formula for a proper integral.

Density with derivatives having power-type singularity

Density of the form $g(\alpha, \tau) = (c - \tau)^{\gamma} g_{\gamma}(\alpha, \tau)$, c = a or c = b.

If $j-1 < Re\gamma < j$, then the derivatives $\frac{\partial^j g(\alpha,\tau)}{\partial \tau^j}$ and $\frac{\partial^j g(c,\tau)}{\partial \tau^{j-1}\partial c}$ are singular at the point $\tau=c$, tending to infinity as $\frac{1}{(c-\tau)^{j-Re\gamma}}$.

Thus the integral

$$\int_{a(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau$$

of order k = j + 1 with such density is not defined.

Density derivatives aren't Holder continuous!

Differentiation of a integral with the density which derivatives have power-type singularity

For such a density we may represent the integral as the sum:

$$\int_{a(\alpha)}^{a_1(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau + \int_{a_1(\alpha)}^{b_1(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau + \int_{b_1(\alpha)}^{b(\alpha)} \frac{g(\alpha,\tau)}{(\tau-t)^k} d\tau,$$

$$a_1(\alpha) \qquad \qquad t \qquad b_1(\alpha)$$

$$a(\alpha) \qquad \qquad t \qquad b_1(\alpha)$$

and the differentiation theorem holds for points within an arc ab.

The second integral is hypersingular and is well defined.

The first and the third don't have any singularity!

Special case, when $g(\alpha, c) = 0$

When the density (opening) is zero at the edge points (fracture front) the differentiation formula means that it is possible to differentiate under the integral sign:

$$\frac{\partial}{\partial \alpha} \int_{\mathsf{a}(\alpha)}^{\mathsf{b}(\alpha)} \frac{\mathsf{g}(\alpha,\tau)}{(\tau-t)^k} d\tau = \int_{\mathsf{a}(\alpha)}^{\mathsf{b}(\alpha)} \frac{\partial \mathsf{g}(\alpha,\tau)}{\partial \alpha} \frac{d\tau}{(\tau-t)^k}.$$

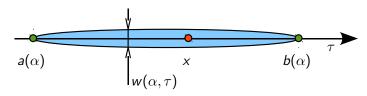
Using the regularization formula this equation may be written as

$$\frac{\partial}{\partial \alpha} \int_{\mathsf{a}(\alpha)}^{\mathsf{b}(\alpha)} \frac{\mathsf{g}(\alpha,\tau)}{(\tau-t)^k} d\tau = \frac{1}{k-1} \frac{\partial}{\partial t} \int_{\mathsf{a}(\alpha)}^{\mathsf{b}(\alpha)} \frac{\partial \mathsf{g}(\alpha,\tau)}{\partial \alpha} \frac{d\tau}{(\tau-t)^{k-1}}.$$

Example – an early stage of the hydraulic fracturing:

- influence of viscosity is negligible,
- the net-pressure is constant along the fracture: $p(\alpha, x) = p(\alpha), \ \partial p/\partial x = 0,$
- plain-strain conditions: the opening w is given by the well-known formula

$$w(\alpha,\tau) = \frac{4(1-\nu^2)}{E}p(\alpha)\sqrt{\left(\tau - a(\alpha)\right)\left(b(\alpha) - \tau\right)}.$$



The dependence between the net-pressure p and the fracture opening w in hypersingular form is:

$$p(\alpha) = -\frac{1}{\pi} \int_{a(\alpha)}^{b(\alpha)} \frac{p(\alpha)\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)}d\tau}{(\tau - x)^2}.$$

For the derivative $\partial p/\partial \alpha = dp/d\alpha$, it yields

$$\frac{dp}{d\alpha} = -\frac{1}{\pi} \frac{\partial}{\partial \alpha} \int_{a(\alpha)}^{b(\alpha)} \frac{p(\alpha)\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)} d\tau}{(\tau - x)^2}.$$

We will evaluate the right hand side of this equation and compare the result with the left.

From the differentiation rule, when $g(\alpha, c) = 0$, we have:

$$\frac{\partial}{\partial \alpha} \int_{a(\alpha)}^{b(\alpha)} \frac{p(\alpha)\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)}}{(\tau - x)^2} d\tau =$$

$$= \frac{dp(\alpha)}{d\alpha} \int_{a(\alpha)}^{b(\alpha)} \frac{\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)} d\tau}{(\tau - x)^2} +$$

$$+p(\alpha)\frac{1}{2}\frac{\partial}{\partial x}\int_{a}^{b}\frac{(\tau-a)db/d\alpha-(b-\tau)da/d\alpha}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)}d\tau.$$

From the differentiation rule, when $g(\alpha, c) = 0$, we have:

$$\frac{\partial}{\partial \alpha} \int_{a(\alpha)}^{b(\alpha)} \frac{p(\alpha)\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)}}{(\tau - x)^2} d\tau =$$

$$= \frac{dp(\alpha)}{d\alpha} \underbrace{\int_{a(\alpha)}^{b(\alpha)} \frac{\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)} d\tau}{(\tau - x)^2}}_{-\pi} +$$

$$+p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)(\tau - x)}} d\tau.$$

The general theory implies that
$$\int\limits_a^b \frac{d\tau}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)} = 0,$$

$$p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau$$

$$= p(\alpha) \frac{1}{2} \left(\frac{db}{d\alpha} + \frac{da}{d\alpha}\right) \frac{\partial}{\partial x} \int_{a}^{b} \frac{\tau}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau.$$

The general theory implies that
$$\int\limits_{a}^{b} \frac{d\tau}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)} = 0,$$

$$p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau$$

$$= p(\alpha) \frac{1}{2} \left(\frac{db}{d\alpha} + \frac{da}{d\alpha} \right) \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - x) + x}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau.$$

The general theory implies that
$$\int\limits_{a}^{b} \frac{d\tau}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)} = 0,$$

$$p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau$$

$$= p(\alpha) \frac{1}{2} \left(\frac{db}{d\alpha} + \frac{da}{d\alpha}\right) \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - x) + x}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau.$$

The general theory implies that
$$\int\limits_{a}^{b} \frac{d\tau}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)} = 0,$$

$$p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau$$

$$= p(\alpha) \frac{1}{2} \left(\frac{db}{d\alpha} + \frac{da}{d\alpha} \right) \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - x)}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau.$$

The general theory implies that
$$\int\limits_{a}^{b} \frac{d\tau}{\sqrt{(\tau-a)(b-\tau)}(\tau-x)} = 0,$$

$$p(\alpha) \frac{1}{2} \frac{\partial}{\partial x} \int_{a}^{b} \frac{(\tau - a)db/d\alpha - (b - \tau)da/d\alpha}{\sqrt{(\tau - a)(b - \tau)}(\tau - x)} d\tau$$

$$= p(\alpha) \frac{1}{2} \left(\frac{db}{d\alpha} + \frac{da}{d\alpha}\right) \frac{\partial}{\partial x} \int_{a}^{b} \frac{1}{\sqrt{(\tau - a)(b - \tau)}} d\tau$$

$$= 0.$$

That is:
$$\overbrace{\frac{\partial}{\partial \alpha} \int\limits_{\mathsf{a}(\alpha)}^{\mathsf{b}(\alpha)} \frac{\mathsf{p}(\alpha) \sqrt{\left(\tau - \mathsf{a}(\alpha)\right) \left(\mathsf{b}(\alpha) - \tau\right)} \mathsf{d}\tau}_{\mathsf{a}(\alpha)} = -\pi \frac{\mathsf{d}\mathsf{p}}{\mathsf{d}\alpha},$$

what concludes the derivation and conforms the theorem:

$$\frac{dp}{d\alpha} = -\frac{1}{\pi} \frac{\partial}{\partial \alpha} \int_{a(\alpha)}^{b(\alpha)} \frac{p(\alpha)\sqrt{(\tau - a(\alpha))(b(\alpha) - \tau)} d\tau}{(\tau - x)^2}$$
$$\stackrel{(*)}{=} -\frac{1}{\pi} \left(-\pi \frac{dp}{d\alpha} \right) = \frac{dp}{d\alpha}.$$

Thank you for attention!