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Evaluation of temporal derivative for propagating front of hydraulic fracture

Hydraulic Fracturing

The work concerns with the problem of hydraulic fracture
propagating in time.

|
—o—— = »
a(a) bs b(a)
w(a, T)

« is the time (parameter).
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Problem formulation

2D prciblem for a straight crack.

e—— >
a(«) bs b(«)
w(a, T)

The classical elasticity equation connecting the net-pressure p and
the opening w is:

b(a)
E ow(a,7) dt
_ <x<
Pl x) 4m(1 —v?) / ar T-x @ =%= o
a(e)

where E is the elasticity modulus, v is the Poisson’s ratio of the

rock mass.
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Problem formulation

A corresponding hypersingular form

b(a)

w(a, T) dT

p(Oé,X) = 1 — V2) / ( :
a(a)

(1 —x)?
The rate of the pressure change %p(a,x) is a characteristic
strongly dependent on the fluid injection regime.

The integral on the r. h. s. is hypersingular.
The question is: how to differentiate it

with respect to the parameter o (time)?

We need to extend the theory to obtain the differentiation rule.
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Complex variable hypersingular integrals

The CV hypersingular integral

a:T(ya) £ = 7(7:) b:T(’)/b)

I(t) = / %(ﬁ', where k > 1,
J T
defined in accordance with the general theory
refers to moment, it then refers to problems in which the boundary
of a surface is fixed.
See e.g. Linkov A. M., Boundary Integral Equations in Elasticity Theory,
Dordrecht, Kluwer Academic Publishers, 2002.
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Special cases of CVHI

m For k =1 we have Cauchy integral

T)dT
—t

b
,1(t):/ s(

\]

m For kK = 2 Hadamard integral

b
h(t) :/%df.

a
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Problems to be discussed

Problems to be discussed

m concept of the CVHI with the density and limits of integration
depending on a parameter,

m extension to a density with derivative(s) having power-type
singularity at arc tips.
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CVHI with a parameter

The definition of the CVHI of order k with a parameter

b(a) ( )
g\a, T
Ik(a,t): / mdr
a(a)

m ab is an open, smooth curve (arc) in the complex plane,

m 7,(), 7p(c) have Holder continuous derivatives,
k
m the density g(«, 7) has Holder continuous % and also

Holder continuous %.

b(a) = T(’)/b(a))

ala) =1 (Va(a))
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CVHI with a parameter

Basic properties

Two useful formulae:

m Extended Newton-Leibnitz formula:

b(a) :
g(a, 1) _ _ 1T (k—1)
L(a) (7_ _ t)k dr = Jg(o% b) Jg(a> 3) + klgt (Oé, t)a
g(a,7)

where Jg (o, 7) is an antiderivative of the integrand o Of

m The regularization formula for k > 2:

b(a)

d gom')
dt (1 —t)k k_l)/ —)k

a(a)
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CVHI with a parameter

Differentiation of a CVHI with respect to a parameter

The derivative of a hypersingular integral

b(e)

g(a,7)

| — S\ 1)
k(a’ t) /a(a) (T t)k a

with respect to the parameter o may be evaluated as

Ol (a, t) /b("‘) og(a,7) drt gla,b) db  g(a,a) da
da  Jaay Oa (r—t)k (b—t)kda (a—t)kda

We can see that the theorem is the same as
the well known formula for a proper integral.
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Density with derivatives having power-type singularity

Density with derivatives having power-type singularity

Density of the form g(a,7) = (¢ — 7)7gy(,7), c=aor c = b.
. . . - 8’g(a77—)
If j —1 < Rey <, then the derivatives ==~

singular at the point 7 = ¢, tending to infinity as (e=ry—Fe

Bfg(c,r)

and 5775

are

Thus the integral
b(a)

/ gla.7)
(1 — t)k
a(a)
of order k = j + 1 with such density is not defined.

Density derivatives aren’t Holder continuous!
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Density with derivatives having power-type singularity

Differentiation of a integral with the density
which derivatives have power-type singularity

For such a density we may represent the integral as the sum:

ai(a) by () b(«)

and the differentiation theorem holds for points within an arc ab.

The second integral is hypersingular and is well defined.

The first and the third don’t have any singularity!
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Density with derivatives having power-type singularity

Special case, when g(a,c) =0

When the density (opening) is zero at the edge points (fracture
front) the differentiation formula means that it is possible to
differentiate under the integral sign:

9 /b“” glonr) | _ /b@ dg(a,7) _dr
Oo a(a) (T—t)k T= a(a) oo (T—t)k'

Using the regularization formula this equation may be written as

0 b(a) gla, 1) dr — 1 9 b(e) og(a, 1) dr
Oa a(a) (’7‘ — t)k  k—10t a(a) oJe" (T — t)k_l'
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Example

Example — an early stage of the hydraulic fracturing:

m influence of viscosity is negligible,

m the net-pressure is constant along the fracture:
p(a, x) = p(a), Op/dx =0,
m plain-strain conditions: the opening w is given by the
well-known formula
4(1 —v?)
E

p(a)y/ (7 — a(a)) (b(a) — 7).

w(a, T) =

e—— ————x >
a(«@) X b(«)
w(a, T)
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Example

The dependence between the net-pressure p and the fracture
opening w in hypersingular form is:

b(a)p(a)\/(T — a(a)) (b(a) — 7') dr

pl0) = —%a (/) P

For the derivative Op/0a = dp/da, it yields

o 10 b(a)p(a)\/(T —a(a)) (b(a) — 7)dT
da = x0a (/) =P '

We will evaluate the right hand side of this equation

and compare the result with the left.
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From the differentiation rule, when g(«, c) =0, we have:

o [b) p(a)\/(T — a(a)) (b(a) —7) dr —

90 Joa) (7 —x)?
_ dpla) /b<a> = a@) (b(0) — 7)r
da a(a) (’7‘ — X)2
b
10 [(r=a db/da — (b— r)da/da
58_/ (r —a) _T)(T_X) dr.
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Example

From the differentiation rule, when g(«, c) =0, we have:

o o p(a)\/(T —a(a)) (b(e) — 7)

Ja a(a) (T - X)2 dr =

dr.

b
li/ T—adb/da—( —7)da/da
28

(r—a) —T)(T—X)
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Example

(%)

b

d
The general theory implies that /
a

V(T —a)(b—T1)(T —x)

=0,

b
10 /(T—a)db/da—(b—T)da/dadT

Pl (r—2)(b-1)(r—x)

a

1/db da\ O

b
= pla), (% + £> aa/ mﬁ —er
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Example

(%)

b

d
The general theory implies that / T

V(T —a)(b—T1)(T —x)

=0,

b
10 /(T—a)db/da—(b—T)da/dadT

Pl J (r—2)(b-1)(r—x)
b
B 1/db da\ O (7‘ x)+x
—p(@)—(a ) V(r—a)(b—rT T—X)
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Example

(*)
b
The general theory implies that / = )(Zi o = ):O,
b
19 [(r—a)db/da—(b—T)da/da .
p(o‘)zaxa/ b —x)
b

(N[ e
= p(a)3 (da + da) o) el X)d
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Example

(*)
b
The general theory implies that / = )(Zi o = ):O,
b
19 [(r—a)db/da—(b—T)da/da .
p(o‘)zaxa/ b —x)
b

l(d N2 [ () .
= p(a)3 (da + da) o) a0 X)d :
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Example

()
b
The general theory implies that / = )(Zi o = ):O,
b
19 [(r—a)db/da—(b—T)da/da .
p(o‘)zaxa/ b —x)
b
1/db da\ 0 [ 1
=r(o)3 (G + i) a—/ P CEr

=0.
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Example

b(a)
. 9 p(a)\/(T —a(a))(b(a) — 7)dT  dp
That is: 0 (/) (r = %) T a

o 10 b(a)p(a)\/(T — a(a)) (b(ar) — 7)dT
da 7o« (/) (T — x)2

o 1 _dp)\ _ dp
o7 Tda )~ da
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Example

Thank you for attention!
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