Dislocations in Prestressed Metals

Luca Prakash Argani

Italian/British Workshop on Fluid & Solids Interaction and Fracture & Failure of Solids and Structures Support from the grant PIAP-GA-2009-251475-HYDROFRAC is gratefully acknowledged

16 August 2011

イロト イポト イヨト イヨト

Table of Contents

Summary

Constitutive framework and equilibrium equations

- Constitutive framework
- Equilibrium equations and regime classification
- Incremental velocity and mean stress fields

The inclusion problem

- Incremental displacement field
- Incremental mean stress field
- Alternative solutions
- Circular inclusion

The dislocation problem

Straight edge dislocations dipole

State of the art and conclusions

< ロ > < 同 > < 回 > < 回 >

Summary Constitutive framework and equilibrium equations

The inclusion problem The dislocation problem State of the art and conclusions

Summary

- $\bullet\,$ We generalize the inclusion and the edge dislocation problems, starting from the solutions given by Eshelby (1957) and Willis (1965)
- These are limited to the case of linear isotropic elasticity
- We extend the solutions to the general case of infinite, homogeneouly prestressed and incompressible elastic plane, introducing an incremental formulation
- The incremental displacement and mean stress fields show singularities, which are treated with the Green's functions
- Our solutions for the inclusion problem can be mathematically manipulated to give the field expressions for the dislocation problem
- Two samples of a circular inclusion and an edge dislocation dipole have been implemented in order to make a comparison with the analytic solutions and to understand the role of the prestress

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constitutive framework Equilibrium equations and regime classification Incremental velocity and mean stress fields

Constitutive framework

- We refer to an incompressiblle nonlinear elastic material deformed under plane strain condition
- Constitutive equations (Biot, 1965) and incompressibility constraint:

$$\dot{t}_{ij} = \mathbb{K}_{ijkl} v_{l,k} + \dot{p} \delta_{ij} \qquad v_{i,i} = 0$$
(1)

- \mathbb{K} has the major simmetry: $\mathbb{K}_{ijkl} = \mathbb{K}_{klij}$
- Dimensionless prestress and anisotropy parameters:

$$\xi = \frac{\mu_*}{\mu} \qquad \eta = \frac{p}{\mu} = \frac{\sigma_1 + \sigma_2}{2\mu} \qquad \kappa = \frac{\sigma}{2\mu} = \frac{\sigma_1 - \sigma_2}{2\mu}$$
(2)

• We will restrict the analysis to the elliptic regime, which corresponds to

$$\mu > 0$$
 $k^2 < 1$ $2\xi > 1 - \sqrt{1 - k^2}$ (3)

• Introduction of the J_2 -deformation theory of plasticity (Hutchinson and Neale, 1979):

$$k = \tanh(2\varepsilon) \qquad \xi = \frac{Nk}{2\varepsilon}$$
 (4)

イロト 不得 トイヨト イヨト

Constitutive framework Equilibrium equations and regime classification Incremental velocity and mean stress fields

(5)

Equilibrium equations and regime classification

- Reference system, vectors ω , x and angles θ , α are shown in Fig. 1
- Equilibrium equations:

$$\dot{t}_{ij,i}+\dot{f}_j\delta(m{x})=
ho v_{j,tt}$$

- A manipulation of the equilbrium equations gives the regime classification
- Introduction of the operator $L(\omega)$ in the characteristic equation:

$$L(\boldsymbol{\omega}) = \mu \omega_2^4 \left(1 + \kappa\right) \left(\frac{\omega_1^2}{\omega_2^2} - \gamma_1\right) \left(\frac{\omega_1^2}{\omega_2^2} - \gamma_2\right) > 0 \quad \text{in E}$$
(6)

• Plane wave expansion, with stream function $(v_1 = \psi_{,2}, v_2 = -\psi_{,1})$ and Green's tensor $(v_1^g = \psi_{,2}^g, v_2^g = -\psi_{,1}^g)$

$$\delta(\boldsymbol{x}) = -\frac{1}{4\pi^2} \oint_{|\boldsymbol{\omega}|=1} \frac{d\omega}{(\boldsymbol{\omega} \cdot \boldsymbol{x})^2} \qquad \psi^g(\boldsymbol{x}) = -\frac{1}{4\pi^2} \oint_{|\boldsymbol{\omega}|=1} \tilde{\psi}^g(\boldsymbol{\omega} \cdot \boldsymbol{x}) \, d\omega \qquad (7)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constitutive framework Equilibrium equations and regime classification Incremental velocity and mean stress fields

Incremental velocity and mean stress fields

Incremental velocity field:

$$v_m^g = -\frac{r}{4\pi^2 \mu \left(1+\kappa\right)} \int_0^{2\pi} \sin\left[\alpha + \theta + (1-m)\frac{\pi}{2}\right] \cos\left[\alpha + \theta + (2-g)\frac{\pi}{2}\right] \frac{\ln|\cos\alpha|}{\Lambda(\alpha+\theta)} d\alpha$$
(8)

• Incremental mean stress field:

$$\dot{\pi}^{1} = -\frac{\cos\theta}{2\pi r} + \frac{1}{4\pi^{2}(1+k)r} \int_{0}^{2\pi} \frac{\sin^{2}(\alpha+\theta)\cos(\alpha+\theta)\Gamma(\alpha+\theta)}{\Lambda(\alpha+\theta)\cos\alpha} d\alpha \quad (9a)$$
$$\dot{\pi}^{2} = -\frac{\cos\theta}{2\pi r} - \frac{1}{4\pi^{2}(1+k)r} \int_{0}^{2\pi} \frac{\sin(\alpha+\theta)\cos^{2}(\alpha+\theta)\Gamma(\alpha+\theta)}{\Lambda(\alpha+\theta)\cos\alpha} d\alpha \quad (9b)$$

where:

$$\Xi(x) = \operatorname{Ci}(|x|) \sin x \operatorname{Si}(x) \cos x - \frac{\pi}{2} \sin x$$

$$\Lambda(\alpha) = \sin^4 \alpha \left(\cot^2 \alpha - \gamma_1 \right) \left(\cot^2 \alpha - \gamma_2 \right) > 0 \tag{10}$$

$$\Gamma(\alpha + \theta) = 2 \left(\xi - 1 \right) \left[2 \cos^2(\alpha + \theta) - 1 \right] - k$$

Geometry and initial conditions

- We consider an infinite region D containing an inclusion of arbitrary shape, with volume V and surface $S = \partial V$ (Fig. 2)
- The inclusion is subject to a prescribed uniform incremental displacement gradient $v_{i,j}^P$ that can be thought as an inelastic (for instance plastic or thermal) deformation
- The inclusion is constrained by the surrounding matrix material, so that an elastic deformation $v^E_{i,i}$ is produced
- $\bullet\,$ The 'total' incremental displacement gradient $v_{i,j}$ can be obtained through the additive rule

$$v_{i,j} = v_{i,j}^E + v_{i,j}^P$$
(11)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Incremental displacement field Incremental mean stress field Alternative solutions Circular inclusion

Incremental displacement field

The elastic part of the incremental deformation produces the incremental nominal stress

$$\dot{t}_{ij} = \mathbb{K}_{ijkl} v_{l,k} - \mathbb{K}_{ijkl} v_{l,k}^P + \dot{p} \,\delta_{ij} - \dot{p}^P \delta_{ij} \tag{12}$$

• Equilibrium equations for an infinite body containing a concentrated unit force

$$\dot{t}_{ij,i}^{g}\left(\boldsymbol{y}-\boldsymbol{x}\right)+\delta_{gj}\delta\left(\boldsymbol{y}-\boldsymbol{x}\right)=0$$
(13)

• We consider the closed smooth domain $D_{out} = D - C_{\varepsilon} - V$ (Fig. 2) and apply the Betti's identity

$$\int_{D_{\text{out}}} \left[\dot{t}_{ij,i}^g \left(\boldsymbol{y} - \boldsymbol{x} \right) v_j(\boldsymbol{x}) - \dot{t}_{ij,i}(\boldsymbol{x}) v_j^g \left(\boldsymbol{y} - \boldsymbol{x} \right) \right] dV_{\boldsymbol{x}} = 0$$
(14)

- Deviator of the incremental displacement gradient: $\tilde{v}_{i,j} = v_{i,j} \frac{1}{3}v_{k,k}\delta_{i,j}$
- Application of Gauss theorem and the major simmetry of \mathbb{K}_{ijkl} yields the *integral* equation for the incremental displacements outside the inclusion produced by the uniform inelastic field $v_{l,k}^p$

$$v_g(\boldsymbol{y}) = \int_{S} \mathbb{K}_{ijkl} v_{l,k}^P n_i v_j^g \left(\boldsymbol{y} - \boldsymbol{x}\right) \, dS_{\boldsymbol{x}} - \int_{V} \dot{p}^g \left(\boldsymbol{y} - \boldsymbol{x}\right) \, v_{k,k}^P \, dV_{\boldsymbol{x}} \tag{15}$$

Incremental displacement field Incremental mean stress field Alternative solutions Circular inclusion

Incremental mean stress field

 $\bullet\,$ The incremental equilibrium equations (13) allow us to derive the gradient of \dot{p} in the form

$$\dot{p}_{,k} = -\mathbb{K}_{jklm}\tilde{v}_{m,lj} \tag{16}$$

 A substitution of the second derivative of (15), together with a manipulation of the term K_{sirg} p^e_{,rs} (Bigoni-Capuani, 2002) yields the *integral equation for the incremental mean stress outside the inclusion produced by the uniform inelastic field* v^P_{l,k}

$$\dot{p}(\boldsymbol{y}) = -\int_{S} \mathbb{K}_{jklm} v_{m,l}^{P} \dot{p}^{k} (\boldsymbol{y} - \boldsymbol{x}) n_{j} dS_{\boldsymbol{x}} - 2\mu^{2} \int_{V} \left[\left[4\xi(1 - 2\xi) + k(1 - k - 4\xi) \right] v_{1,11}^{1} - k(1 + k) v_{2,11}^{2} \right] v_{k,k}^{P} dV_{\boldsymbol{x}}$$
(17)

イロト 不得下 イヨト イヨト

Alternative solutions

- It is possible to derive expressions alternative, but equivalent to (15) and (17) (Willis, 1965), simply exploiting the equilibrium equations and the Gauss theorem
- Incremental displacement field, equivalent to (15)

$$v_{g}(\boldsymbol{y}) = \int_{S} \left[\mathbb{K}_{jklm} v_{k,j}^{g} \left(\boldsymbol{y} - \boldsymbol{x} \right) + \dot{p}^{g} \left(\boldsymbol{y} - \boldsymbol{x} \right) \delta_{lm} \right] v_{m}^{P} n_{l} \, dS_{\boldsymbol{x}} + \\ -2 \int_{V} p^{g} \left(\boldsymbol{y} - \boldsymbol{x} \right) v_{k,k}^{P} \, dV_{\boldsymbol{x}}$$
(18)

Alternative solutions

• Incremental displacement field, equivalent to (17)

$$\dot{p}(\boldsymbol{y}) = -\int_{S} \left[\mathbb{K}_{jklm} \dot{p}_{,j}^{k} \left(\boldsymbol{y} - \boldsymbol{x} \right) - F \delta_{lm} \right] v_{m}^{P} n_{l} \, dS_{\boldsymbol{x}} - 2 \int_{V} F v_{k,k}^{P} \, dV_{\boldsymbol{x}}$$
(19)

イロト イヨト イヨト

Incremental displacement field Incremental mean stress field Alternative solutions Circular inclusion

Circular inclusion

• Circular inclusion subject to an inelastic volumetric incremental strain $v_{i,j}^P=\beta\delta_{ij}$

$$r^{2} = (y_{1} - a\cos\theta)^{2} + (y_{2} - a\sin\theta)^{2}$$

$$\phi = \arctan\left(\frac{y_{2} - a\sin\theta}{y_{1} - a\cos\theta}\right)$$
(20)

• Boundary equations for *incremental displacements*:

$$v_g(\mathbf{y}) = \beta a \int_0^{2\pi} \left[-(k+\eta)n_1 v_1^g + (k-\eta)n_2 v_2^g \right] d\theta - \beta a \int_0^a \int_0^{2\pi} \dot{p}^g \, d\theta \, da$$
(21)

• Boundary equations for *incremental mean stress*:

$$\dot{p}(\boldsymbol{y}) = \beta a \int_{0}^{2\pi} \left[(k+\eta)n_{1}\dot{p}^{1} - (k-\eta)n_{2}\dot{p}^{2} \right] d\theta - 2\beta a \int_{0}^{a} \int_{0}^{2\pi} \left[\left[4\xi(1+2\xi) + k(1-k-4\xi) \right] v_{1,11}^{1} - k(1+k)v_{2,11}^{2} \right] d\theta da$$
(22)

イロト イボト イヨト イヨト

Summary Constitutive framework and equilibrium equations The inclusion problem The dislocation problem State of the art and conclusions	Incremental displacement field Incremental mean stress field Alternative solutions Circular inclusion
--	--

Circular inclusion

• Simple case of null prestress (k = 0) and isotropic elasticity $(\xi = 1)$:

$$v_g = \frac{\beta a}{\pi} \int_0^a \int_0^{2\pi} \frac{y_g - x_g}{r^2} \, d\theta \, da \qquad \dot{p} = 0$$
 (23)

Remarks

- We can obtain the displacement and mean stress fields for the compressible isotropic elastic material ($\nu = 0.5$) simply by changing the constitutive equations in (21) and (22)
- A comparison between these solutions and the solutions of Eshelby can be made, showing the same results
- Our solutions are more general, even in the simple case of compressible isotropic elastic material

イロト 不得 トイヨト イヨト

Straight edge dislocations dipole

Straight edge dislocations dipole

• The integral equations determining the incremental displacement and mean stress can be obtained from equations (18) and (19) by considering a thin (thickness h) rectangular inclusion, (without loss of generality) with one edge centred at the origin and subject to the incremental simple shear displacement field

$$v_i^P = \frac{x_k n_k}{h} b_i \qquad b_k n_k = 0$$
(24)

 Taking the limit h → 0, we obtain the integral equations for a straight edge dislocation in a prestressed material

$$v_g(\boldsymbol{y}) = \int_D b_m n_l(\boldsymbol{x}) \mathbb{K}_{jklm} v_{k,j}^g \left(\boldsymbol{x} - \boldsymbol{x}\right) dD_{\boldsymbol{x}}$$
(25a)

$$\dot{p}(\boldsymbol{y}) = -\int_{D} b_m n_l(\boldsymbol{x}) \mathbb{K}_{jklm} \dot{p}_{,j}^k \left(\boldsymbol{x} - \boldsymbol{x}\right) dD_{\boldsymbol{x}}$$
(25b)

< ロ > < 同 > < 回 > < 回 >

× A

Straight edge dislocations dipole

Straight edge dislocations dipole

• Assuming the reference system shown in Fig. 1 and representing the dislocation line with a polar coordinate system (ρ , ψ), where $\rho \in [0, a]$, we have

$$\boldsymbol{b} = b \{ \cos\psi, \sin\psi \} \qquad \boldsymbol{n} = \{ -\sin\psi, \cos\psi \}$$
$$r^{2} = (y_{1} - \rho\cos\psi)^{2} + (y_{2} - \rho\sin\psi)^{2} \qquad \phi = \arctan\left(\frac{y_{2} - \rho\sin\psi}{y_{1} - \rho\cos\psi}\right) \qquad (26)$$

• Since *b* is constant and orthogonal to *n*, the *incremental displacement* and *mean stress fields* become

$$v_{g}(\boldsymbol{y}) = b \int_{0}^{a} \left[\Omega_{1}(\psi) v_{1,1}^{g}(\boldsymbol{y}, \rho, \psi) + \Omega_{2}(\psi) v_{1,2}^{g}(\boldsymbol{y}, \rho, \psi) + \Omega_{3}(\psi) v_{2,1}^{g}(\boldsymbol{y}, \rho, \psi) \right] d\rho$$
(27a)

$$\dot{p}(\boldsymbol{y}) = -b \int_{0}^{a} \left[\Omega_{2}(\psi) \, \dot{p}_{,2}^{1}(\boldsymbol{y}, \rho, \psi) + \Omega_{3}(\psi) \, \dot{p}_{,1}^{2}(\boldsymbol{y}, \rho, \psi) + \Omega_{4}(\psi) \, \dot{p}_{,1}^{1}(\boldsymbol{y}, \rho, \psi) + \Omega_{5}(\psi) \, \dot{p}_{,2}^{2}(\boldsymbol{y}, \rho, \psi) \right] d\rho$$
(27b)

イロト イヨト イヨト

Straight edge dislocations dipole

Straight edge dislocations dipole

where

$$\Omega_{1}(\psi) = \mu(\eta - 2\xi)\sin(2\psi)
\Omega_{2}(\psi) = \mu \left[(1-k)\cos^{2}\psi - (1-\eta)\sin^{2}\psi \right]
\Omega_{3}(\psi) = \mu \left[(1-\eta)\cos^{2}\psi - (1+k)\sin^{2}\psi \right]
\Omega_{4}(\psi) = \frac{\mu}{2}(k+\eta - 2\xi)\sin(2\psi) \qquad \Omega_{5}(\psi) = \frac{\mu}{2}(k-\eta + 2\xi)\sin(2\psi)$$
(28)

• In the simple case of null prestress (k = 0 and $\eta = 0$) equations (27) reduce to

$$v_{g}(\mathbf{y}) = \mu b \int_{0}^{a} \left[-2\xi v_{1,1}^{g}(\mathbf{y}, \rho, \psi) \sin(2\psi) + \left[v_{1,2}^{g}(\mathbf{y}, \rho, \psi) + v_{2,1}^{g}(\mathbf{y}, \rho, \psi) \right] \cos(2\psi) \right] d\rho$$

$$p(\mathbf{y}) = -\mu b \int_{0}^{a} \left[\left[\dot{p}_{,2}^{1}(\mathbf{y}, \rho, \psi) + \dot{p}_{,1}^{2}(\mathbf{y}, \rho, \psi) \right] \cos(2\psi) + \left(\xi \left[\dot{p}_{,1}^{1}(\mathbf{y}, \rho, \psi) - \dot{p}_{,2}^{2}(\mathbf{y}, \rho, \psi) \right] \sin(2\psi) \right] d\rho$$
(29a)
$$(29a)$$

$$p(\mathbf{y}) = -\mu b \int_{0}^{a} \left[\left[\dot{p}_{,2}^{1}(\mathbf{y}, \rho, \psi) + \dot{p}_{,1}^{2}(\mathbf{y}, \rho, \psi) \right] \cos(2\psi) + \left(\xi \left[\dot{p}_{,1}^{1}(\mathbf{y}, \rho, \psi) - \dot{p}_{,2}^{2}(\mathbf{y}, \rho, \psi) \right] \sin(2\psi) \right] d\rho$$

◆□▶ ◆□▶ ◆三▶ ◆三▶

Straight edge dislocations dipole

Example: numerical models for v1 displacement

$$(\psi = 0, k = 0.866, \xi = 1/4)$$

 $(\psi = \pi/4, k = 0.866, \xi = 1/4)$

イロト イヨト イヨト イヨト

Straight edge dislocations dipole

Displacements and mean stress along the dislocation line

- The displacement and the mean stress fields can be evaluated along the dislocation line through equations (27)
- The point y along the dislocation line is represented by $y=(r+\rho)\{\cos\psi,\sin\psi\}$ and the angle ϕ is constant and equal to ψ
- The Green's function gradient for displacement and mean stress can be expressed as

$$v_{i,j}^{g} = \frac{1}{r} \bar{v}_{i,j}^{g}(\alpha, \psi) \qquad \dot{p}_{,i}^{g} = \frac{1}{r^{2}} \dot{p}_{,i}^{g}(\alpha, \psi)$$
(30)

where $\bar{v}_{i,j}^g$ and $\dot{\bar{p}}_{,i}^g$ are function of the sole variables α and $\phi=\psi$

< ロ > < 同 > < 回 > < 回 >

Straight edge dislocations dipole

Displacements and mean stress along the dislocation line

 The dependence on ρ is explicit, so that the displacement and mean stress fields along the dislocation take the following form

$$v_{g}(\boldsymbol{y}) = b \ln \left(\frac{R}{R-a}\right) \left[\Omega_{1}(\psi) \, \bar{v}_{1,1}^{g}(\boldsymbol{y}, \alpha, \psi) + \Omega_{2}(\psi) \, \bar{v}_{1,2}^{g}(\boldsymbol{y}, \alpha, \psi) + \Omega_{3}(\psi) \, \bar{v}_{2,1}^{g}(\boldsymbol{y}, \alpha, \psi) \right]$$
(31a)
$$\dot{p}(\boldsymbol{y}) = -\frac{b \, a}{R(R-a)} \left[\Omega_{2}(\psi) \, \dot{p}_{1}^{1}(\boldsymbol{y}, \alpha, \psi) + \Omega_{3}(\psi) \, \dot{p}_{1}^{2}(\boldsymbol{y}, \alpha, \psi) + \Omega_{4}(\psi) \, \dot{p}_{1,1}^{1}(\boldsymbol{y}, \alpha, \psi) + \Omega_{5}(\psi) \, \dot{p}_{2}^{2}(\boldsymbol{y}, \alpha, \psi) \right]$$
(31b)

 These two equations show a logarithmic and an hyperbolic discontinuity in displacement and mean stress field respectively

Luca Prakash Argani (University of Trento)

Dislocations in Prestressed Metals

State of the art and conclusions

- The inclusion and dislocation problems have been generalized to the case of infinite, homogeneouly prestressed and incompressible elastic plane (incremental formulation)
- ${\ensuremath{\bullet}}$ The solutions have been also extended to the $J_2\mbox{-flow theory}$
- A comparison between our solutions (reduced to the linear isotropic elastic material) and the classical solutions (limited to the linear isotropic elastic material) and shows the perfect equivalence of the results
- Numerical models for the edge dislocation have been implemented in order to investigate the shear band formation near the elliptic border
- Other numerical simulations will be implemented in order to lead to a better understanding of the role of the prestress
- An experiment on the edge dislocation (an innovation in this field) will be made in the next weeks with photoelasticity techniques

Acknowledgements: Support from the grant PIAP-GA-2009-251475-HYDROFRAC is gratefully acknowledged

イロト 不得 トイヨト イヨト

Thank You for Your attention!

Luca Prakash Argani (University of Trento)	Dislocations in Prestressed Metals	16 August 2011	20/20
--	------------------------------------	----------------	-------

<ロ> <0</p>