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Summary

Summary

@ We generalize the inclusion and the edge dislocation problems, starting from the
solutions given by Eshelby (1957) and Willis (1965)

@ These are limited to the case of linear isotropic elasticity

@ We extend the solutions to the general case of infinite, homogeneouly prestressed
and incompressible elastic plane, introducing an incremental formulation

9@ The incremental displacement and mean stress fields show singularities, which are
treated with the Green's functions

@ Our solutions for the inclusion problem can be mathematically manipulated to
give the field expressions for the dislocation problem

@ Two samples of a circular inclusion and an edge dislocation dipole have been
implemented in order to make a comparison with the analytic solutions and to
understand the role of the prestress
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Constitutive framework and equilibrium equations Constitutive framework
Equilibrium ons and
Incremental and mean si

Constitutive framework

@ We refer to an incompressiblle nonlinear elastic material deformed under plane
strain condition

(9

Constitutive equations (Biot, 1965) and incompressibility constraint:

ty = Kymos + b0 vi,i =0 1)

(9

KK has the major simmetry: K = Kyy;

¢ Dimensionless prestress and anisotropy parameters:

“w p o1+ o2 (o4 g1 — 02
B B 2p 2p 2p

(9

We will restrict the analysis to the elliptic regime, which corresponds to

u>0 k<1 26 >1—1+/1—k2 (3)

@ Introduction of the J>-deformation theory of plasticity (Hutchinson and Neale,
1979):
_ Nk

k = tanh(2¢) &= o (4)
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Constitutive framework and equilibrium equations

ions and regime classifi
ity and mean stress fi

9@ Reference system, vectors w, x and angles 6, « are
shown in Fig. 1

@ Equilibrium equations:

tij,i +fj5("") = pYjit ‘ (5)

(9

A manipulation of the equilbrium equations gives the regime classification

@ Introduction of the operator L(w) in the characteristic equation:
2 2
w w
L(w) = pwi (1+ %) (; —’y1) (; —72) >0 inE (6)
w2 w2
o Plane wave expansion, with stream function (vi =2 ,v2 = —1,1) and Green’s
tensor (v =%, ,v§ = —v9)
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Constitutive framework and equilibrium equations C
ilibri d regime classification

Incremental velocltv and mean stress fields

Incremental velocity and mean stress fields

9 Incremental velocity field:

27
r . ™
”?n:—mfo s a4 0.+ (1=m)F ] cos ot 04

In|cos a|

+2- 9)5] Ala+0)

@ Incremental mean stress field:

1 cos 6 T sin2(a + 0) cos(a + 0)T (o + 6) d
== o
2rr  Am2(1+k)r A(a+6)cosa
D) cos @ sin(a + 0) cos?(a + 0)T'(a + 0) d
#2 = _ _
2rr  4m2(1 +l~c Ala+0)cosa
where:

&(z) = Ci(|z|) sin z Si(z) cos z — gsinx
Ala) = sin? o (cot2 o — 71) (cot2 o —’yg) >0
T(a+0)=2(—1) [2cos*(a+0) 1] —k
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Inc ental displacement field
remental mean stress field

The inclusion problem

utions
rcular inclusion

Geometry and initial conditions

VeV, o8
¥
ov=s

v, Vv, o

@ We consider an infinite region D containing an inclusion of arbitrary shape, with
volume V and surface S = 9V (Fig. 2)

@ The inclusion is subject to a prescribed uniform incremental displacement

gradient vfj that can be thought as an inelastic (for instance plastic or thermal)

deformation
@ The inclusion is constrained by the surrounding matrix material, so that an elastic

deformation viEj is produced

@ The 'total’ incremental displacement gradient v; ; can be obtained through the
additive rule

vij = vfj + vfj (11)
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Incremental displacement field
. . stress field
The inclusion problem ros

Incremental displacement field

@ The elastic part of the incremental deformation produces the incremental nominal
stress
tij = Kyjrvx — ]Kijklvfk + 9y — pl oy (12)
@ Equilibrium equations for an infinite body containing a concentrated unit force

thi (y—x) +di0 (y—2) =0 (13)

@ We consider the closed smooth domain Doyt = D — C: — V (Fig. 2) and apply
the Betti's identity

/L; [ (y— @) vj(@) — tyi(2)! (y— 2)] dVe =0 (14)

@ Deviator of the incremental displacement gradient: Vi = vij— %vk,kém

9 Application of Gauss theorem and the major simmetry of Ky yields the integral
equation for the incremental displacements outside the inclusion produced by
the uniform inelastic field vlp &

vg(y) Z/]Kijkzvfknivf(y—m) dSz_/ P (y—2) v dVi (15)
s v
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Incremental displacement field
cremental mean stress field

Al tiv tions

Circular inclusion

The inclusion problem

Incremental mean stress field

@ The incremental equilibrium equations (13) allow us to derive the gradient of p in
the form

R (16)
@ A substitution of the second derivative of (15), together with a manipulation of
the term ]ngp,gm (Bigoni-Capuani, 2002) yields the integral equation for the

incremental mean stress outside the inclusion produced by the uniform inelastic
field v,

p(y) = — / Kpimvyy 0" (y — @) nj dSe — 244 / [[45(172£)+
s v (17)

+h(1—k—48)]o] ;1 — k(1 + k)yg,ll] vl pdVe
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The inclusion problem i 1
P Alternative solutions

Circular inclusion

Alternative solutions

9 It is possible to derive expressions alternative, but equivalent to (15) and (17)
(Willis, 1965), simply exploiting the equilibrium equations and the Gauss theorem

9 Incremental displacement field, equivalent to (15)

vg(y) = / []Kjklm’ulg,j (y - 11) + j)g (y - m) alm] U;an dSz+
’ (18)

By p—
14

9 Incremental displacement field, equivalent to (17)

ply) = —/ [Kjkimp55 (3 — @) = Fépm | viny dSe —2/ Fof,dVe  (19)
S 14
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The inclusion problem

Alternat
Circular inclusion

Circular inclusion

@ Circular inclusion subject to an inelastic volumetric
incremental strain 'ufj = By

72 = (y1 — acos0)? + (y2 — asinh)?
— asin@ 20
¢ = arctan (7” asin ) ( )
y1 — acosf

9 Boundary equations for incremental displacements:

27 a 27
vg(y) :Ba/ [—(k+m)mvf + (k—n)navf] défﬁa/ / 9 dfda (21)
0 0 0

@ Boundary equations for incremental mean stress:

27 a 27
py) = Ba/ [(k+mmp' = (k—m)n2p?| d9—25a/ / [[45(1+
0 o Jo

—26) + +k(1 — k—4€)] v} 1, — k(1 + k)ugn} doda

(22)
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Incremental displ. nent fi
Incremental mean stress field
Alterna utions
Circular inclusion

The inclusion problem

Circular inclusion

9 Simple case of null prestress (k = 0) and isotropic elasticity (£ = 1):

/ / Y9~ %9 49da p=0 (23)

9 We can obtain the displacement and mean stress fields for the compressible
isotropic elastic material (v = 0.5) simply by changing the constitutive equations
in (21) and (22)

@ A comparison between these solutions and the solutions of Eshelby can be made,
showing the same results

9 Our solutions are more general, even in the simple case of compressible isotropic
elastic material




Straight edge dislocations dipole

The dislocation problem

Straight edge dislocations dipole

@ The integral equations determining the incremental
displacement and mean stress can be obtained
from equations (18) and (19) by considering a thin
(thickness k) rectangular inclusion, (without loss of
generality) with one edge centred at the origin and
subject to the incremental simple shear
displacement field

X

TN,
ol = % b bpni =0 (24)
9@ Taking the limit h — 0, we obtain the integral equations for a straight edge
dislocation in a prestressed material

Ug(y) = / bmnl(z)IKjklmv]ij (:E - 33) dDy (253)
D

(y) = 7/ b (@)K P55 (€ — @) dDg (25b)
D
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Straight edge dislocations dipole
The dislocation problem

Straight edge dislocations dipole

@ Assuming the reference system shown in Fig. 1 and representing the dislocation
line with a polar coordinate system (p, 1), where p € [0, a], we have
b= b{cosy,sin} n = {—sinvy,cos}
. — psin (26)
72 = (y1 — pcosh)? + (ya — psiny)? ¢ = arctan (7312 Ld 7/1)
y1 — pcosy

@ Since b is constant and orthogonal to n, the incremental displacement and
mean stress fields become

vy(y) = b/ [01(1/1) o 1 (4, p,0) + Q2 () v 5 (y, p, )+
0 (27a)

+03(v) vg,l(y,p,tb)} dp

p(y) = *b/ {Qz(w)p,lz(y,p,w) +Q3(¢) 97 (9, p )+
0 (27b)
+Qa(¥) P (y, %) + Q5 (4) 2 (y, p, ) | dp
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Straight edge dislocations dipole
The dislocation problem

Straight edge dislocations dipole

where

(¥)
(¥) = pu [(1 = k) cos? ¢ — (1 —n) sin? ]
O3(¢) = p [(1 = n) cos® ¢ — (1+ k) sin” ¢

() =Skt n-20sin(20)  Qs(¥) = £(k—n+20) sin(20)

(28)

@ In the simple case of null prestress (k = 0 and n = 0) equations (27) reduce to

ve(y) = ub/ [*25 of 1 (y,p,0) sin(29) + [v] 5 (y, p, )+
0
(29a)

+0d 1 (v, 0,0)] Cos(2¢)} dp

ply) = —p b/ “p}z(y,p,w) + 27 (y, p, ¥) | cos(2)+
0 (29b)

~ €[ 0) = (w0, 0)] sin(20) | dp
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Straight edge dislocations dipole
The dislocation problem

Example: numerical models for vl displacement

k= 0.866, & = 1/4)




Straight edge dislocations dipole
The dislocation problem

Displacements and mean stress along the dislocation line

@ The displacement and the mean stress fields can be evaluated along the
dislocation line through equations (27)

9 The point y along the dislocation line is represented by y = (r + p){cos 1, sin}
and the angle ¢ is constant and equal to v

@ The Green's function gradient for displacement and mean stress can be expressed

as
1 1.
o= t(y) B = i) (30)

6] T ] ,

where 7_)?7' and p% are function of the sole variables o and ¢ = 1
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Straight edge dislocations dipole
The dislocation problem

Displacements and mean stress along the dislocation line

@ The dependence on p is explicit, so that the displacement and mean stress fields
along the dislocation take the following form

w(w) = v () [Q1(0) 04 (v 000) + Qa(0) f w0, 0)+

—a

(31a)
+03(0) 4 (v )|

ba

§3) = = Gy [ 02(9) Pa(w.0,0) + 05(8) 7 (3,0 ) ¢ -

() B (w0 ) + Qs () % (v, w)}

@ These two equations show a logarithmic and an hyperbolic discontinuity in
displacement and mean stress field respectively
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State of the art and conclusions

State of the art and conclusions

@ The inclusion and dislocation problems have been generalized to the case of
infinite, homogeneouly prestressed and incompressible elastic plane (incremental
formulation)

@ The solutions have been also extended to the Ja2-flow theory

@ A comparison between our solutions (reduced to the linear isotropic elastic
material) and the classical solutions (limited to the linear isotropic elastic
material) and shows the perfect equivalence of the results

@ Numerical models for the edge dislocation have been implemented in order to
investigate the shear band formation near the elliptic border

@ Other numerical simulations will be implemented in order to lead to a better
understanding of the role of the prestress

9 An experiment on the edge dislocation (an innovation in this field) will be made
in the next weeks with photoelasticity techniques
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Thank You for Your attention!
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