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The problem and motivation

+
µ

µ
−

Crack advancing in a bimaterial plane with finite array of defects

What is the effect of the defects on the propagation of the crack?
Amplification/shielding effects?

Can we arrange the defects in such a way to stop the propagation of the crack?

Vice versa, can we arrange the defects in such a way to make the crack propagate
up to the end of the array?

New challenges:

Interfacial crack

Weight function for an interfacial crack

Singular perturbation procedure related to small defects

Singular perturbation procedure related to small advance of the crack
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Type of defects
Small elastic inclusions

Small voids

Small rigid inclusions

Microcracks

Rigid line inclusions

µ i

Line defect with imperfect bonding: γ
ε

s

Line defect with soft bonding (stiffness κ): [[σ]](s) = 0, σ(s) = κ[[u]](s){
κ = 0 ⇒ σ(s) = 0 microcrack
κ =∞ ⇒ [[u]](s) = 0 perfect bonding (no defect)

Stiff line defect (stiffness κ): [[u]](s) = 0, [[σ]](s) + κ ∂2u
∂s2

∣∣∣
γε

= 0 κ = 0 ⇒ [[σ]](s) = 0 no defect

κ =∞ ⇒ ∂2u
∂s2

∣∣∣
γε

= 0 rigid line inclusion
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Problem formulation
Bimaterial plane with a dominant crack along the interface and small defects:

1
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2
Y

p −

lε
1

2

lε
2

2

lε
3

2

x 1

+p

x 2

ε2 φ

µ+

µ−

Singular perturbations:
1 Elastic inclusion
2 Microcrack
3 Rigid line inclusion

Singular perturbation:
1 Crack advance

Small parameter ε:
diameter of defect 2εl, ε� 1

Assumptions:
1 Mode III deformation
2 Loading on the crack surfaces
3 Perfect interfaces (continuity of displacements and tractions)
4 The composite is dilute (neglect interactions between small defects)
5 Stable quasi-static propagation (neglect inertia terms)
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The asymptotic ansatz

u(x, ε) =

�� ��u(0)(x) +

�� ��ε
∑3

j=1 Wj(ξj) +

�� ��ε2∑3
j=1 u(j)(x) +

�� ��ε2v(x, φ) + o(ε2), ε→ 0

p −

x 2

x 1

+p

1 Solution of the unperturbed problem (ε = 0)
2 Boundary layers concentrated near the

defects
3 Additional terms to adjust the BC and IC

disturbed by the boundary layers
4 Perturbation associated with the crack

advance ε2φ

Using the linearity of the problem, we analyse the perturbation of each defect
separately (superposition principle).

The method can be extended to a finite number of defects, provided that the
distance between defects remains finite (composite is dilute).
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The first challenge: Weight functions for an interfacial crack

“Weight functions are fundamental solutions for the problem of a cracked body”

Linear elasticity:

Point force

y

e

x

Displacement
u(x,y)

Green’s function
for elastic body

ui(x, y) = Gij(x, y)ej

Linear fracture mechanics:

Point forces

SIFs

a

Weight functions for
cracked homogeneous body

K =

√
2
π

(1 + i)a−1/2

Interfacial crack:

Point forces

SIFs

a

Weight functions for
interfacial crack

?
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The weight functions for an interfacial crack

Mode III symmetric and skew-symmetric weight functions:

[[U3]](x1) =


1− i√

2π
x−1/2

1 , for x1 > 0,

0, for x1 < 0,
〈U3〉 =

η

2
[[U3]],

Integral formula for the computation of the Mode III SIF:

KIII = −(1 + i) lim
x′1→0+

∫ 0

−∞
{[[U3]](x′1 − x1)〈p3〉(x1)︸ ︷︷ ︸

symmetric part

+ 〈U3〉(x′1 − x1)[[p3]](x1)︸ ︷︷ ︸
skew-symmetric part

}dx1

η =
µ− − µ+

µ− + µ+
bimaterial parameter
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The second challenge: singular perturbation for a small defect
x 2

ε w2 (x)

Wε (ξ)

ε w2 (x)

+µ

−µ
x 1

Y
d

ϕ

⇒

x 2

+µ

−µ
x 1

The defect is replaced by “effective” tractions

Dipole field: ε2w(x) = − ε
2

2π

[
∇u(0)

∣∣∣
Y

]
·
[
M x− Y
|x− Y|2

]
+ o(ε2), ε→ 0

M is the dipole matrix

Perturbation of the SIF:

�



�
	∆KIII = −

√
2
π

µ+µ−
µ+ + µ−

∇u(0)
∣∣∣
Y
·Mc

c =
1

2d3/2

[
− sin

3ϕ
2
, cos

3ϕ
2

]
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Example: Elliptic elastic inclusion

2
εa

2
εb

i

α

µ

⇒ ξ =
x− Y
ε

⇒ ξ 1

ξ 2

2 b

a2

µ i

µ
Dipole field:

ε2w(x) = − ε
2

2π

[
∇u(0)

∣∣∣
Y

]
·
[
M x− Y
|x− Y|2

]
+ o(ε2), ε→ 0

Dipole matrix

M = −π
2

ab(1 + e)(µ? − 1)


1 + cos 2α

e + µ?
+

1− cos 2α
1 + eµ?

− (1− e)(µ? − 1) sin 2α
(e + µ?)(1 + eµ?)

− (1− e)(µ? − 1) sin 2α
(e + µ?)(1 + eµ?)

1− cos 2α1

e + µ?
+

1 + cos 2α
1 + eµ?


µ? = µ/µi e = b/a
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Dipole matrix for different types of defects

2
ε
l

α

microcrack
M = −πl2

[
sin2 α − sinα cosα

− sinα cosα cos2 α

]

2
ε
l

α

rigid line inclusion
M = πl2

[
cos2 α sinα cosα

sinα cosα sin2 α

]

2
ε
a

2
ε
b

α

elliptic void

M = −π
2 ab(1/e + 1)

[
1− cos 2α + e(1 + cos 2α) −(1− e) sin 2α

−(1− e) sin 2α 1 + cos 2α + e(1− cos 2α)

]

2
ε
a

2
ε
b

α

elliptic rigid inclusion

M = π
2 ab(1/e + 1)

[
1 + cos 2α + e(1− cos 2α) (1− e) sin 2α

(1− e) sin 2α 1− cos 2α + e(1 + cos 2α)

]

2
ε
l

α

line defect (soft)
M = −π

2
l2

κl+1

[
1 − cos 2α − sin 2α

− sin 2α 1 + cos 2α

]

2
ε
l

α

line defect (stiff)
M = π

2
κl2
κ+l

[
1 + cos 2α sin 2α

sin 2α 1 − cos 2α

]
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Application: Shielding and amplification effects

∆KIII = −
√

2
π

µ+µ−
µ+ + µ−

∇u(0)
∣∣∣
Y
·Mc

Definition:

∆KIII < 0: shielding effect “the defect is preventing the propagation”
∆KIII > 0: amplification effect “the defect is promoting the propagation”
∆KIII = 0: neutral “the defect has no effect”

Example: shielding/amplification diagrams for macro-microcrack interaction

x1

x2

µ+

µ−

2 b

d

= FF +

Y

= FF −
2= FF −

1 / 2/ 2

a

2 lε

α

ϕ
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4
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j

Α
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0

Π

4

Π
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4

Π

Α
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3 Π
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Π
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Π

4
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Π
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Α
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The third challenge: Singular perturbation for crack advance

x 1
p −

+p

+

µ−

µ

ε

x 2

φ2

The Betti identity:∫ ∞
−∞

{
[[U]](x′1 − x1)〈σ〉(x1) + 〈U〉(x′1 − x1)[[σ]](x1)− 〈Σ〉(x′1 − x1)[[u]](x1)

}
dx1 = 0

u, σ physical solution U, Σ weight functions

Perturbation of the SIF:

�



�
	ε2∆KφIII =

ε2φ

2
A(0)

III

A(0)
III =

√
2
π

∫ 0

−∞

(
〈p〉(x1) +

η

2
[[p]](x1)

)
(−x1)

−3/2dx1
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Analysis of a stable quasi-static propagation

The stress intensity factor is expanded as follows:

KIII = K(0)
III + ε2

∆KφIII +

3∑
j=1

∆K(j)
III

+ o(ε2), ε→ 0

∆KφIII =
ε2φ

2
A(0)

III : perturbation produced by the
elongation of the crack along the
interface

∑3
j=1 ∆K(j)

III : perturbation produced by
the defects

We assume that the crack propagation is stable and quasi-static: G = Gc

G =
1
4

(
1
µ+

+
1
µ−

)
K2

III ⇒ ∆KφIII +
3∑

j=1

∆K(j)
III = 0 ⇒

�
�

�
φ =

2

A(0)
III

3∑
j=1

∆K(j)
III

∆K(j)
III = −

√
2
π

µ+µ−
µ+ + µ−

∇u(0)
∣∣∣
Y j

·Mjcj, cj =
1

2d3/2
j

[
− sin

3ϕj

2
, cos

3ϕj

2

]
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Application: Crack propagation and arrest

1
Y

3
Y

γ ε
2

p −

lε
1

2

lε
3

2

lε
2

2

x 1

+p

x 2

ε2 φ

Given a configuration of defects and position of the
crack tip, the incremental crack advance φ is given by:

φ =
2

A(0)
III

3∑
j=1

∆K(j)
III

It is possible to update the configuration with the new position of the crack tip and recompute the
incremental crack advance in the new configuration, following an iterative procedure:

the crack “accelerates” when the increment φ is increasing

the crack “decelerates” when the increment φ is decreasing

the crack “arrests” when a neutral configuration is reached (φ = 0)

The total crack elongation is computed as:

x(N) =
N∑

i=0

ε2φi

where N is the number of iterations.
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Crack propagation in a finite array of defects
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Conclusions and possible extensions

This asymptotic method can be extended to the case of an infinite array of defects

-4 w -2 w 0 2 w 4 w

-2 h

-h

0

h

2 h

x
y

−j = −N  , ... , −1 j = 1, ... , N+

j = −1−2 0 1 2 3 4 5

h

w−3

φ =
al2 cos 2α

2h2

−1 +

N+∑
j=1

(
1− h2

j2w2

)
h2

j2w2(
1 + h2

j2w2

)2 +
N−∑
j=1

(
1− h2

j2w2

)
h2

j2w2(
1 + h2

j2w2

)2


Take the limit as N+ →∞:

φ =
al2 cos 2α

2h2

−1
2
−

(
πh
w

)2

2 sinh2
(
πh
w

) +

N−∑
j=1

(
1− h2

j2w2

)
h2

j2w2(
1 + h2

j2w2

)2
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