
Metoda elementów skończonych dla
symulacji zadań mechaniki

konstrukcji o
dużym (ponad kilka milionów

równań) rozmiarze na zwykłych PC i
laptopach

Sergiy Fialko

Institute of Computer Modelling, Cracow

University of Technology

Kraków, Poland
sfialko@poczta.onet.pl

Preface:

� More and more high-dimensionality problems of

mechanics of solids and structures become solvable on

individual desktop computers without involving expensive

workstations, clusters, networking etc.

� This architecture requires a specific development of FEA

software because methods used in distributed memory

systems are often not the most efficient on desktop computers

because of a restricted capacity of the core memory and a

narrow bandwidth of the memory system.

� The discussion will be confined to finite element solvers for

problems in mechanics of solids and structures, implemented

in software for individual desktop multi-core computers.
2

3

Direct methods

xzxL

zyDz

ybLy

LDLAbAx

→=

→=

→=

⋅⋅=→=

T

T

1. Skyline

2. Frontal

3. Domain decomposition

4. Sparse direct solvers from libraries of high performance

5. Multi-frontal [1, 2]

6. PARDISO [8], PARFES [3]

4

Motivation of PARFES:

� Good scalability and high performance of PARDISO

solver from Intel MKL library

� Poor scalability of multi-frontal methods on the

shared-memory computers due to lot of data transfers

from one memory area to another

� Solvers from well-known high performance libraries

are not able to use the HD memory – only respectively

small problems is possible to solve on desktop

computers

5

Objectives:

� Creation of the high-performance parallel

finite element solver, which:

a. Has a good speed-up in core mode

b. Uses a disk memory when the dimension

of problem exceeds of the core memory

storage (virtualization property)

6

Outline:

� Kx = b → K = L·S·LT , where K = KT

� Decomposition of the sparse global finite element matrix on

to dense rectangular matrix blocks and application of the level

BLAS 3 routines from Itel MKL

� Parallelization scheme

� Virtualization

� Numerical results and its comparison with multi-frontal

solver and PARDISO

7

Sparse direct solvers for FEA software: key stages

� Reordering for reduction of fill-inns

� Subdivision of sparse matrix to dense rectangular blocks – a

key moment for achievement of high performance (matrix-

matrix multiplication procedure instead of vector-scalar ones)

� Speed-up with increasing of processor numbers

� Virtualization when dimension of problem exceeds of core

memory capacity

� Controlling of singularity and precision

8

Reordering for reduction of fill-inns

For sparse matrices the number of nonzero entries after factoring

essentially depends on order of elimination of equations -

reordering

Fill-in –

nonzero entry

in factored

matrix which

arises on

position of zero

entry of source

matrix

9

Real FE model from collection of SCAD Soft (www.scadsoft.com):

19 409 nodes, 19 456 finite elements and 115 362 equations

10

No reordering - 3 741 Mb RCM - 1 618 Mb

11

Sloan - 1 386 Mb PSM+MMD - 345 Mb

12

ND - 644 Mb QMD, MMD – 209 (191) Mb

13

Multilevel Reordering– 193 Mb

14

Reordering Method Nonzero

entries in

factorized

matrix

Size of

factorized

matrix, Мb

No reordering 490 366 701 3 741

RCM 212 143 113 1 618

Sloan 181 750 005 1 386

PSM+MMD 45 281 385 345

ND 84 522 753 644

QMD 27 501 777 209

MMD 25 142 373 191

Multilevel Reordering 25 341 381 193

15

� The computational cost of finding of optimal ordering is not

less than the factoring cost of non-ordered matrix. Therefore, in

practice, using heuristic algorithms.

� The result is that :

o exists the many kinds of such algorithms

o none of them does not lead to the optimal solution, but

for better or worse approximation to it

o for given problem is not known in advance which of the

algorithms leads to the smallest number of nonzero entries

� Fast symbolic factorization algorithm, which works on

adjacency graph of sparse matrix, allows one try the several

algorithms during the few seconds and select the most proper

one.

Subdivision of sparse matrix to dense rectangular blocks – a key

moment for achievement of high performance. (the matrix-matrix

multiplication procedure instead of matrix-vector or vector-scalar

ones is applied)

16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500

W
y

d
a

jn
o

ść
,

M
F

LO
P

S

Rozmiar N

classic ijk

classic ikj (HP)

Block cache lb=40

Block_cache_reg

lb=176

DGEMM Intel

MKL

Procesor – Intel® Core™2

Quad CPU Q6600 @2.40 GHz

Cache - L1: 32 KB,

L2:4096 KB

Pamięć: DDR2 800 MHz 8 GB

Classic ijk:

One ops – one transaction –

processor performs mainly

the empty tics.

Intel MKL:

the using of fast memory

hides the slow memory

system – processor runs on

top of performance.

Matrix multiplication: C = C+A·B .
Comparison of performancefor several algorithms.

Example: a plane frame

Fig. 1. The plane frame

Fig. 2. The nodal adjacency

graph before ordering

17

18

Fig. 3. The nodal adjacency graph

after reordering. The supported

nodes are marked by dash line



































12

11

10

9

8

7

6

4

2

xxxxxxx

xxxxx

xxx

xx

x

x

Fig. 4. The sparse matrix after reordering

and symbolic factorization. “x” means

nonzero entry in factorized matrix

� The main task is to subdivide the sparse matrix on rectangular

blocks without essential increasing of non-zero entries.

� The super-nodal technique is applied for it.

19



































12

11

10

9

8

7

6

4

2

xxxxxxx

xxxxx

xxx

xx

x

x

Fig. 6. The subdivision of sparse matrix

on rectangular dense submatrices. Each

diagonal block presents a supernode.

Fig. 5. Elimination tree and super-nodal

elimination tree

2

4

6 7

8

9

10

11

12

62, 4 7, 8

9, 10,
11, 12

20

� Preparation of special data structures for storage of

rectangular dense sub-matrices

Diagonal block

Nonzero entries

Typical structure of block column

21

Decomposition of the sparse global finite

element matrix on to dense rectangular

matrix blocks

� Each node of the FE model contains the several equations

which produce a dense submatrix - the natural grouping of

equations occurs.

� The topological characteristics of the design model is used

rather than structure of sparse global matrix.

� The reordering procedure is applied to reduce the fill-inns.

The nodal adjacency graph is analyzed for it.

22

� The symbolical factorization, based on theorem by

D.J.Rose, is produced to obtain a sparse specimen of factor

matrix L .

� Creates an elimination tree and produces its renumbering

1

2 3

4

5

1 2

3 4

5

� Permutes the block columns in sparse matrix according with

new numbering

23

Sparse decomposition algorithm: (looking

left [3])

jb

ib

kb

jb – the block column, which is factored on this step. This column is updated

by columns, are located at the left.

24

Sparse decomposition algorithm: (looking left)

1. if(core mode)

prepare block-columns jb ϵ [1, Nb]

2. do jb = 1, Nb

3. if(OOC ˅ OOC1)

prepare block-column jb

4. Parallel correction of block-column jb:

Libjbib
jbListkb

kbjb
T

kbkbibjbibjbib ∈≥⋅⋅−= ∑
∈

,;
][

,,,, ASAAA

5. Factoring of block-column jb:

jbjb
T

jbjbjbjbjb ,,, LSLA ⋅⋅=

parallel loop ib ≥ jb, ib ϵ L:

;,,,, jbibjbib
T

jbib
T

jbjbjb LALSL →=⋅⋅

25

Sparse decomposition algorithm: (looking left)

if(OOC ˅ OOC1)

write block-column jb to disk and free RAM

for block-row ib = jb.

6. Add jb to List[lb], lb > jb, if block-column jb corrects

the block-column lb.

7. end do.

26

� Update of block column jb:

jbkb

ib

kb

Ajb,kb

AT
jb,kb

● Ajb,jb

●

●

AT
jb,kb

AT
jb,kb

Aib,kb

Aib,kb

Aib,jb

Aib,jb

27

� Mapping of blocks Aib,kb on to processors [3]:

ip = 2; ∑W12

ip = 3; ∑W13

1 3 6 9 12

12

13

14

15

16

17

18

19

20

21

22

ib

kb

ip = 1; ∑W15

ip = 3; ∑W16

ip = 1; ∑W18

ip = 2; ∑W19

ip = 0; ∑W20

ip = 0; ∑W22

∑ Wib = ∑ Mkb · LDAkb,ib
kb kb

Mkb

LDAkb,ib

Sort: W22 > W15 > W12 > W13 > W20 > W18 > W19 > W16

28

� Mapping of blocks Aib,kb on to processors [3] :

o Defines the sum of weights: ∑ Wib = ∑ Mkb · LDAib,kb
kb kb

o Descending sort of sum of weights

o

o find min_ip ϵ [0, 1, …, ProcNumb-1] |

(sumofweights[min_ip] is minimal)

o sumofweights[min_ip] += ∑ Wib ; thread_numb[ib] = min_ip
kb

o end loop over ib

o (loop over kb)

o (loop over ib)

o Q[thread_numb[ib]] ← (Aib,kb ; Ajb,kb ; kb) (put to queues Q[ip])

o end loops over ib, kb

kbLib ∈∀

[] 0][1Pr,,1,0 =−∈∀ iptssumofweighocNumbip K

][jbLinkkb ∈∀

jbLib∈∀

29

� Parallel update of block column jb [3] :

o # pragma omp parallel (ip ϵ [0, ProcNumb-1])

o while(Q[ip] is not empty)

o Aib,kb; Ajb,kb ← Q[ip]; Q[ip] ← (Q[ip] /(Aib,kb; Ajb,kb ; kb))

o

o end while

o end of parallel region

;,,,, kbjb
T

kbkbibjbibjbib ASAAA ⋅⋅−=

30

jb

Allocated in RAM

Stored to disk and free

Never allocated

Virtualization

� OOC mode is turned on if the dimension of problem exceeds

the core memory storage [3]

31

jb

Allocated in RAM

Stored to disk and free

Never allocated

Virtualization

� OOC1 mode is turned on if the dimension of problem exceeds

the capability of OOC mode

32

Numerical results

1. 4-core computer Intel® Core™2 Quad CPU Q6600 @2.40 GHz,

cache L1 – 32 KB, L2 – 4096 KB,

RAM: DDR2 800 MT/s, 8 GB core memory,

Chipset: Intel P35/G33/G31,

OS – Windows VistaTM Business (64-bit), Service Pack 2

2. 4-core computer AMD Phenom™ II x4 995 3.2 GHz;

L1: 4x64 KB L2: 4x512 KB L3: 6 MB;

RAM: DDR3 1066 MT/s, 16 GB core memory,

Chipset: AMD 790X,

OS: Windows VistaTM Business (64-bit), Service Pack 2

33

Numerical results

3. Workstation DELL with two processors Intel Xeon X5660 @ 2.8

GHz /3.2 GHz (2×6 = 12 cores),

RAM DDR3, 24 GB core memory,

OS – Windows 7 (64-bit)

4. Notebook Toshiba Satellite:

Processor: Intel Pentium Dual CPU T3200 @ 2.00 GHz

Cache: L1: 32 KB, L2: 1024 KB

RAM: DDR2 – 667 MT/s 4 GB

Chipset: Intel GL40 rev. 07

OS: Windows VistaTM Business (64-bit), Service Pack 2

34

Numerical results

Table 1. Duration of numerical factorization (s) for a Cube 50x50x50

problem (397,941 equations), methods BSMFM and ANSYS v11.0 are

used, a Core™2 Quad based computer

Method Number of processors Comments

1 2 4

BSMFM 827 504 365 ia32

ANSYS v11.0 1 610 882 544 ia32

The performance of the BSMFM solver [4, 5] is at least as good as

that of the multi-frontal method implemented in the well-known

ANSYS software. Therefore the BSMFM method can be treated as

a good implementation of the multi-frontal method which is quite

usable in comparisons of this kind.

35

Numerical results
Multi-functional complex “Aquamarine” in Vladivostok

36

Numerical results

� Real problems from computational practice of SCAD

Aquamarine problem, 881 908 equations

37

Numerical results

Method NonZer

(L), MB

Number of processors Comments

1 2 3 4

PARFES (CM) 3 511 186 97 67 53 x64, Core™2 Quad

PARDISO(CM) 3 252 160 89 69 62 x64, Core™2 Quad

BSMFM (CM) 3 187 369 284 257 246 x64, Core™2 Quad

PARFES (CM) 3 511 139 71.9 49.5 38.6 x64, AMD Phenom™ II x4

995

PARDISO(CM) 3 187 135 70.6 49.2 39.9 x64, AMD Phenom™ II x4

995

BSMFM (CM) 3 187 291 203 180 166 x64, AMD Phenom™ II x4

995

Table 2. Duration of numerical factorization (s) of the for the Aquamarine

problem, 881 908 equations [3].

38

Numerical results [3]

0 1 2 3 4
0

1

2

3

4

PARFES

PARDISO

BSMFM

ideal

PARFES

PARDISO

BSMFM

ideal

Number of processors

S
p
=

T
1
/T

p

0 1 2 3 4
0

1

2

3

4

PARFES

PARDISO

BSMFM

ideal

PARFES

PARDISO

BSMFM

ideal

Number of processors

S
p
=

T
1
/T

p

Aquamarine problem on a

Core™2 Quad based computer

(numerical factorization phase)

Aquamarine problem on an

AMD Phenom™ II x4 995 based

computer (numerical

factorization phase)

39

Numerical results

Problem schema_new_1, 3 198 609 equations

40

Numerical results

Table 3. Duration of the solution phases of the schema_new_1 problem

(3,198,609 equations), a Core™2 Quad based computer [3]

Method NonZer

(L), MB

Ana-

lysis,

s

Numerical

factorization, s

Solution

phase, s

Com-

ment

sNumber of processors Number of

proc.

1 2 3 4 1 4

PARFES (ООС) 12 186 23.6 1 190 802 594 475 804 526 X64

PARDISO(ООС) 10 662 61.4 Numer. factorization phase: error = -11 X64

BSMFM (OOC) 10 869 9.0 2 011 1 482 1 286 1 232 497 x64

41

Numerical results

OOC mode [3]

0 1 2 3 4
0

1

2

3

4

PARFES

BSMFM

ideal

PARFES

BSMFM

ideal

Number of processors

S
p
=

T
1
/T

p

0 1 2 3 4
0

1

2

3

4

PARFEM

BSMFM

ideal

PARFEM

BSMFM

ideal

Number of processors

S
p

=
T

1
/T

p

Schema_new_1 problem on a

Core™2 Quad based computer

(numerical factorization phase)

Schema_new_1 problem on an AMD

Phenom™ II x4 995 based computer

(numerical factorization phase),

RAM restricted to 8 GB

42

Numerical results

Schema_new_1 problem on an AMD Phenom™ II x4 995

based computer (numerical factorization phase),

RAM - 16 GB

0

1

2

3

4

0 1 2 3 4

S
p

 =
 T

1
/T

p

number of processors

ideal
PARFES OOC1
PARFES OOC

PARFES CM

8 610 MFLOPS

706 MB RAM

22 898 MFLOPS

2 995 MB RAM

32 453 MFLOPS

12 186 MB RAM

43

Numerical results

Schema_new_1 problem on an AMD Phenom™ II x4 995 based

computer (numerical factorization phase),

RAM - 16 GB

0

5000

10000

15000

20000

25000

30000

35000

40000

CM OOC OOC1

Performance, MFLOPS

0

2000

4000

6000

8000

10000

12000

14000

CM OOC OOC1

Core Memory, MB

44

Numerical results

Table 4. Duration of factoring phase for problem schema_new_1 (3,198,609

equations), AMD Phenom™ II x4 995 based computer (numerical factorization

phase), RAM - 16 GB

No's of
proc.

PARFES PARDISO

Numer.
Fact, s

MFLOPS Sp = T1/Tp Numer.
Fact, s

MFLOPS Sp = T1/Tp

1 729 8 759 1 697 7 782 1

2 372 17 160 1.96 367.4 14 775 1.90

3 255 25 063 2.86 260 20 861 2.68

4 196.9 32 453 3.70 207.8 26 181 3.35

45

Numerical results
Табл. 5. Table 8. Duration of factoring phase for problem schema_new_1

(3,198,609 equations), workstation DELL with two processors Intel Xeon

X5660 @ 2.8 GHz /3.2 GHz (12 cores), RAM 24 GB, DDR3, Core mode,

platform ×64

No’s of

proc.

PARFES PARDISO BSMFM

Anal., s Num. Fact., s Anal., s Num. Fact., s Anal., s Num. Fact., s

1 16.9 654 31.06 596 13 1406

2 16.9 337.8 23.59 305.3 13 1015

3 16.9 232.1 25.33 208.6 13 869

4 16.9 177.9 23.26 163.3 13 793

5 16.9 145.7 23.79 135.7 13 786

6 16.9 125.6 25.68 116 13 777

7 16.9 110.6 23.11 100.9 13 772

8 16.9 100.5 23.43 90.83 13 807

9 16.9 92.5 23.98 83.85 13 770

10 16.9 86.3 23.71 79.6 13 796

11 16.9 82.1 29.86 77.36 13 825

12 16.9 87.5 28.58 78.45 13 839

46

Numerical results

 0

 2

 4

 6

 8

 10

 12

0 1 2 3 4 5 6 7 8 9 10 11 12

S
p
 =

 T
1
/T

p

number of processors

id-tb-fun

ideal

ideal-tb

PARFES

PARDISO

BSMFM

Schema_new_1 problem on an Intel Xeon X5660 @ 2.8 GHz

based computer (numerical factorization phase) - CM

47

Numerical results

Notebook Toshiba Satellite:

Processor: Intel Pentium Dual CPU T3200 @ 2.00 GHz

Cache: L1: 32 KB, L2: 1024 KB

RAM: DDR2 – 667 MT/s 4 GB

Chipset: Intel GL40 rev. 07

OS – Windows VistaTM Business (64-bit), Service Pack 2

Application ia32 OOC1 mode 2 threads

Analysis : 26 s

Assembling : 196 s = 3 ‘ 16”

Numerical factoring : 3 111 s = 51’ 51”

Forward/Back reduction: 1 194 s = 19‘ 54”

Total time : 4 532 s = 75’ 32”

48

Numerical results [3]

Problem Oster_РС_34_PС2, 2 763 181

equations

49

Numerical results

Method NonZer

(L), MB

Ana-

lysis

s

Numerical

factorization, s

Solution

phase, s

Com

ments

Number of processors Number of

proc.

1 2 3 4 1 4

PARFES (ООС) 15 761 49.1 1 649 891 640 530 592 510 x64

PARDISO(ООС) Page Fault during analysis phase x64

BSMFM 14 622 29 2 700 1 563 1 251 1 059 498 x64

Table 6. Duration of the solution phase of Oster_РС_34_PС2 problem (2,763,181

equations), an AMD Phenom™ II x4 995 based computer [3]

50

Numerical results – OOC mode [3]

0 1 2 3 4
0

1

2

3

4

PARFES

BSMFM

ideal

PARFES

BSMFM

ideal

Number of processors

S
p

=
T

1
/T

p

0 1 2 3 4
0

1

2

3

4

PARFES

BSMFM

ideal

PARFES

BSMFM

ideal

Number of processors

S
p

=
T

1
/T

p

Oster_РС_34_PС2 problem on a

Core™2 Quad based computer

(numerical factorization phase)

Oster_РС_34_PС2 problem on an AMD

Phenom™ II x4 995 based computer

(numerical factorization phase)

RAM 8 GB

51

PART II. MODAL & SEISMIC ANALYSIS

A block Lanczos method with spectral

transformations for natural vibrations and

seismic analysis of large structures

52

The methods which are applied in modern

FEA software most often are:

• Block subspace iteration (E. Wilson)

• Block Lanczos method (Ericsson T., Ruhe A., Grimes R.G.,

Lewis J.G., Simon H.D., Golub G.H., Underwood R.R.)

53

The Lanczos method: main idea

For arbitrary start vector q0 (q0 must have zero components for

equations with zero rows in mass matrix) performs an iterative

process:

The eigenvalue problem is considered: 02 =− ϕωϕ MK

.,2,1;ˆˆˆ 1

111 K==→⇒= −
+++ jjjjjj MqKqqMqqK

Factorize the stiffness matrix: T
LSLK ⋅⋅=

Solve:

On each step 1
ˆ

+jq is orthogonalized to all previous obtained

vectors .,...,, 11 qqq −jj In exact arithmetic is needed to

orthogonalize explicitly only against ., 1−jj qq

So, the recursion is: 1

1

1
~

−
−

+ −−= jjjjjj qqMqKq βασ

54

The Lanczos method: main idea

j

T

jj Mqq 1
ˆ

+=αwhere and βj is taken from previous step.

On step j+1 : ,~~
111 +++ = j

T

jj qMqβ ./~
111 +++ = jjj βqq

The given sequence of vectors creates a Krylov subspace and

is a fine basis for Rayleigh–Ritz method. The source problem

is presented:
λθθσ /1,01 ==−−

ψMψK

Application of Rayleigh–Ritz method leads to:























===− −

jj

j

T

jjjjjj

αβ

βαβ

βαβ

βα

θ σ

...............

,0 433

322

21

1MQKQTssT

55

The Lanczos method: main idea

{ }
jj qqqQ ,...,, 21=and are Lanczos vectors and

{ }j

jjjjjjj sssSQSY ,...,,, 21==

are the Ritz vectors. The given algorithm is numerically stable

until the first eigenpair is converged. The selective and partial

orthogonalizations are introduced to ensure the numerical

stability of Lanczos method.

56

The shifted block Lanczos method [9] is applied to increase a

performance of classical one.

,02 =− ϕωϕ σσ MK

where shift;; 22 −+=−= σσωωσ σσ MKK

The block version of algorithm allows us to reduce the I/O operations

during forward – back substitutions due to parallel implementation of

the several (block) right-hand-sides (r.h.s.) instead of single r.h.s. It is

very important for large problems: 60 000 – 1 500 000 degrees of

freedom (DOFs) and more.

We solve:

57

The spectral transformations:
σσσσωωωω

λλλλϕϕϕϕλλλλϕϕϕϕ σσσσσσσσσσσσ
−

==−

2

1 1
,MK

are implemented to split the long frequency interval into a few

relatively short ones and reduce the drastic increase of Krylov

subspace size, caused by large number of required eigenpairs.

A trust interval [9]: [] lrrl λλλλλλλλλλλλλλλλλλλλ >∈ ,,

• All eigenpairs are extracted with precision not worse than:

2

86

2

2

2

2 1
,1010/

i

iiiiii tolprec
ωωωω

λλλλϕϕϕϕωωωωϕϕϕϕωωωωϕϕϕϕ =÷=≤=− −−
MMK

• The skipped eigenpairs are missing in the trust interval

58

The extraction of large number eigenpairs consists of expanding of

trust interval by means evaluating of relatively small subintervals.

The choice of new shift value is based on prediction of the right

part of the eigenspectrum:

r
l

new shift value

continued part

of spectra

6 eigenpair

is expected

Converged eigenpairs (prec < tol)

Ritz approximations (0.01 > prec > tol)

Coarse approximations (0.01 < prec)

59

The modes of analysis

Well-known modes:

1. Modal mode – extraction of the required number of eigenpairs

2. Interval mode – extraction of all eigenpairs in frequency

interval [a,b]

Specific modes:

3. Seismic mode [6] – extraction of eigenpairs so long as the

Required sum of modal masses will be achieved in each seismic

Input direction.

4. Verification mode [7] – allows us to detect hard-to-find errors of

a finite element model, such as a local and global dimensional

instability, lack of supports and so on.

60

Multi – storey building in Kiev. FEM
model contains 19409 nodes, 19456
finite elements and 115 362 equations

The modal mode

61

Number

of eigen-

pairs

Subspace

iterations

method

Block subspace

iterations

method

Lanczos

method

Block Lanczos

method with

shifts

25 2 h 28 m 31 s 1 h 49 m 38 s 54 m 24 s 38 m 14 s

50 5 h 18 m 33 s 3 h 06 m 16 s 1 h 22 m 37 s 55 m 56 s

100 > 24 h ~12 h 2 h 22 m 14 s 1 h 52 m 14 s

1 000 ---------- ----------- ----------- 11 h 25 m 02 s

Table 1: The efficiency of different methods

Computer: Р-III CPU Intel 1000 MHz , RAM 512 MB

Precision of eigenpairs is not worse than 10-8

62

Seismic mode [Fialko S.]

Mass participation factor: () OZOYOXdirnidiri
dir
i ,,,,...,2,1,, === ΙΙΙΙϕϕϕϕΓΓΓΓ M

i – mode number, dir – seismic input direction .

Modal mass: () ,%100/
2

×Γ= dir

tot

dir

i

dir

i Mm ()
dirdir

dir

totM ΙΙ= ,M

Property: OZOYOXdirm
N

i

dir
i ,,,%100

1

==∑
=

N – number of degrees of freedom of finite element model,

n – number of eigenmodes, taken into account, usually n << N

If all eigenmodes are taken into account (n = N), the sum of modal

masses is 100% for each seismic input direction. Otherwise (n <

N), the sum of modal masses is less than 100%. So, the sum of

modal masses is a criteria: does the number of eigenmodes taken

into account represent the seismic response well enough?

63

Seismic mode

Mode 1 Mode 2 Mode 3 SRSS over 100

modes

Example: 100 DOFs – 100 modes are extracted

64

Seismic mode

NA – axis force, NA(100%) - axis force for 100% sum of modal masses

V – shear force, V(100%) – shear force for 100% sum of modal masses

M – overturning moment, M(100%) – overturn. moment for 100% sum of m. m.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

S
e

is
m

ic
 r

e
sp

o
n

ce

Sum of modal masses, %

NA/NA(100%)

V/V(100%)

M/M(100%)

65

Seismic mode

Example [6]:

8 937 nodes, 9 073 finite elements and 52 572 equations.

66

Seismic mode

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

s
u
m

 o
f
m

o
d
a
l
m

a
s
s
e
s
 %

number of modes

required Mx, My
required Mz

sum Mx
sum My
sum Mz

2 399 eigenpairs are required to ensure a sufficient sum of

modal masses ∑mx = ∑ my = 90%, ∑ mz = 70%.

67

Seismic mode

1st eigenmode, f = 4.185 Hz 523rd eigenmode, f = 5.67 Hz

%42523 =OX
m

68

Seismic mode

1st eigenmode, f = 4.185 Hz 523rd eigenmode, f = 5.67 Hz

%42523 =OX
m

178 factorizations of the shifted stiffness matrix, 2097 solutions

69

Verification mode [7]

Is designed to detect the geometric instability.

Main idea: if the model is a geometrically unstable,

{ } 0det =K and problem 0=ψλ−ψ MK

has zero eigenvalues. The corresponding eigenmodes

presents the forms of movement mechanism.

The shift technique is applied to avoid a singularity during

factorization:

T

σσσσ LSLK ⋅⋅=

70

Verification mode

FEM model

Eigenmode for λ1 = 0

71

Verification mode

FEM model

Eigenmode for
λ1 = 2.09·10-8 Hz

Eigenmode for
λ2 = 6.91·10-8 Hz

72

Verification mode

FEM model: 24 434 nodes,
26 273 finite elements,
127 165 equations

6 eigenmodes for
λ1 < … < λ6 < 1.36·10-7 Hz

Unconstrained bottoms of
columns !!!

73

CONCLUSIONS

1. The block Lanczos method with a spectral transformation is a

powerful tool for modal & seismic analysis of large design

models.

2. The presented realization contains the modal, interval, seismic

and verification modes.

3. Seismic mode allows us to avoid the multiple repetitions of

conventional modal mode when the required number of

eigenpairs is is not known in advance.

4. Verification mode allows us to display the forms of mechanism

movement and often to detect the another hardly-detected

mistakes of design model.

74

REFERENCES

1. Amestoy PR, Duff IS, L’Excellent J-Y. Multifrontal parallel distributed

symmetric and unsymmetric solvers. Comput. Meth. Appl. Mech. Eng.,

184: 501–520, 2000.

2. Dobrian F, Pothen A. Oblio: a sparse direct solver library for serial and

parallel computations. Technical Report describing the OBLIO software

library, 2000.

3. Fialko S. PARFES: A method for solving finite element linear equations on

multi-core computers. Advances in Engineering software. v 40, 12, 2010,

pp. 1256 – 1265.

4. Fialko S. The block substructure multifrontal method for solution of large

finite element equation sets. Technical Transactions, 1-NP, issue 8: 175 –

188, 2009.

5. Fialko S. The direct methods for solution of the linear equation sets in

modern FEM software. Moscow: SCAD SOFT , 2009. (in Russian).

75

REFERENCES

6. Fialko S. Realization of block Lanczos method with shifts in SCAD software

applying to seismic analysis of structures. CADmaster #40/5.2007

(additional), p. 102 – 105. (In Russian).

7. Karypis G, Kumar V. METIS: Unstructured Graph Partitioning and Sparse

Matrix Ordering System. Technical report, Department of Computer

Science, University of Minnesota, Minneapolis, 1995.

8. Schenk O, Gartner K. Two-level dynamic scheduling in PARDISO: Improved

scalability on shared memory multiprocessing systems. Parallel Computing

28: 187–197, 2002.

9. Grimes, R.G. Lewis, J.G., Simon, H.D., A shifted block Lanczos algorithm for

solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal.

Appl, V.15, 1: pp. 1-45, 1994.

76

Thank you very much for
your attention !

