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Preface:

> More and more high-dimensionality problems of
mechanics of solids and structures become solvable on
individual desktop computers without involving expensive
workstations, clusters, networking etc.

» This architecture requires a specific development of FEA
software because methods used in distributed memory
systems are often not the most efficient on desktop computers
because of a restricted capacity of the core memory and a
narrow bandwidth of the memory system.

» The discussion will be confined to finite element solvers for
problems in mechanics of solids and structures, implemented
in software for individual desktop multi-core computers.
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Direct methods

Ax=b — A=L-D-L'
Ly=b — Yy
Dz=y — 1z

IL'x=z — x

. Skyline

. Frontal

. Domain decomposition

. Sparse direct solvers from libraries of high performance
. Multi-frontal [1, 2]

. PARDISO [8], PARFES [3]



Motivation of PARFES:

» Good scalability and high performance of PARDISO
solver from Intel MKL library

» Poor scalability of multi-frontal methods on the
shared-memory computers due to lot of data transfers
from one memory area to another

» Solvers from well-known high performance libraries
are not able to use the HD memory — only respectively
small problems is possible to solve on desktop
computers



Objectives:

> Creation of the high-performance paraliel
finite element solver, which:

a. Has a good speed-up in core mode
b. Uses a disk memory when the dimension

of problem exceeds of the core memory
storage (virtualization property)



Outline:

> Kx=b = K=L:S:L',where K=K’

» Decomposition of the sparse global finite element matrix on
to dense rectangular matrix blocks and application of the level
BLAS 3 routines from Itel MKL

» Parallelization scheme

> Virtualization

» Numerical results and its comparison with multi-frontal
solver and PARDISO



Sparse direct solvers for FEA software: key stages

> Reordering for reduction of fill-inns

» Subdivision of sparse matrix to dense rectangular blocks — a
key moment for achievement of high performance (matrix-
matrix multiplication procedure instead of vector-scalar ones)

» Speed-up with increasing of processor numbers

» Virtualization when dimension of problem exceeds of core
memory capacity

» Controlling of singularity and precision



Reordering for reduction of fill-inns

For sparse matrices the number of nonzero entries after factoring
essentially depends on order of elimination of equations -
reordering

Fill-in —
nonzero entry
in factored
matrix which
arises on
position of zero
entry of source
matrix
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No reordering - 3 741 Mb RCM -1618 Mb
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mn.

Sloan -1 386 Mb

PSM+MMD - 345 Mb
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ND - 644 Mb QMD, MMD - 209 (191) Mb

12



Multilevel Reordering— 193 Mb
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Reordering Method Nonzero Size of
entries in factorized
factorized matrix, Mb

matrix
No reordering 490 366 701 3741
RCM 212 143 113 1618
Sloan 181 750 005 1386
PSM+MMD 45 281 385 345
ND 84522 753 644
QVD 27 501 777 209
MMD 25142 373 191
Multilevel Reordering 25 341 381 193




> The computational cost of finding of optimal ordering is not
less than the factoring cost of non-ordered matrix. Therefore, in
practice, using heuristic algorithms.

» Theresultis that:
o exists the many kinds of such algorithms

o none of them does not lead to the optimal solution, but
for better or worse approximation to it

o for given problem is not known in advance which of the
algorithms leads to the smallest number of nonzero entries

» Fast symbolic factorization algorithm, which works on
adjacency graph of sparse matrix, allows one try the several
algorithms during the few seconds and select the most proper
one. 15



Subdivision of sparse matrix to dense rectangular blocks — a key
moment for achievement of high performance. (the matrix-matrix
multiplication procedure instead of matrix-vector or vector-scalar

ones is applied)

10000

jnos¢, MFLOPS

Wyda

9000
8000
7000
6000
5000
4000

w
o
o
o

2000
1000

———— == lassic ijk

P
/ «&-classic ikj (HP)

=#=Block cache |b=40

=@=Block cache reg

1R 3 b=176
e
MKL
P —————

500 1000 1500 2000 2500

Rozmiar N

Matrix multiplication: C = C+A-B..
Comparison of performancefor several algorithms.

Procesor - Intel® Core™2
Quad CPU Q6600 @2.40 GHz
Cache - L1:32KaB,
L2:4096 KB
Pamieé: DDR2 800 MHz 8 GB

Classic ijk:

One ops — one transaction —
processor performs mainly
the empty tics.

Intel MKL:

the using of fast memory
hides the slow memory
system — processor runs on
top of performance.

16



Example: a plane frame

8 12
7 11
6 10
Fig. 2. The nodal adjacency
5 g graph before ordering
(] Fd

Fig. 1. The plane frame
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X X X x x x x 12
Fig. 3. The nodal adjacency graph Fig. 4. The sparse matrix after reordering
after reordering. The supported and symbolic factorization. “x” means
nhodes are marked by dash line nonzero entry in factorized matrix

> The main task is to subdivide the sparse matrix on rectangular
blocks without essential increasing of non-zero entries.

» The super-nodal technique is applied for it.



Fig. 5. Elimination tree and super-nodal Fig. 6. The subdivision of sparse matrix
elimination tree on rectangular dense submatrices. Each
diagonal block presents a supernode.
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» Preparation of special data structures for storage of
rectangular dense sub-matrices

/}iagonal block

Nonzero entries

Typical structure of block column
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Decomposition of the sparse global finite
element matrix on to dense rectangular
matrix blocks

» Each node of the FE model contains the several equations
which produce a dense submatrix - the natural grouping of
equations occurs.

» The topological characteristics of the design model is used
rather than structure of sparse global matrix.

» The reordering procedure is applied to reduce the fill-inns.
The nodal adjacency graph is analyzed for it.



» The symbolical factorization, based on theorem by
D.J.Rose, is produced to obtain a sparse specimen of factor
matrix L.

» Creates an elimination tree and produces its renumbering

» Permutes the block columns in sparse matrix according with
new numbering



Sparse decomposition algorithm: (looking
left [3])

ib

jb — the block column, which is factored on this step. This column is updated
by columns, are located at the left.
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Sparse decomposition algorithm: (looking left)

if(core mode)
prepare block-columns jb € [1, N, ]
dojb=1,N,
if(OOC VvV 00C1)
prepare block-column jb
Parallel correction of block-column jb:

A =Aib’jb— ZAib’kb'Skb'Aij,kb; ib> jb,ibe L

kbe List[ jb]

ib, jb
Factoring of block-column jb:

— T . .
A= Ly Sp Ly
parallel loop ib 2 jb, ib € L:

T . r .



Sparse decomposition algorithm: (looking left)

if(OOC VvV 00C1)
write block-column jb to disk and free RAM
for block-row ib = jb.

Add jb to List[Ib], Ib > jb, if block-column jb corrects
the block-column /b.

end do.



» Update of block column jb:
kb Aij,kb .Ib

Aib, Jjb

kb > 26




» Mapping of blocks A, ,, on to processors [3]:

kb > 2 Wi, =2 My, - LDA
kb kb
12
12 ip=2; 3W,,
13 ip=3; IWy;
14
ib 15 ip=1; W,
16 ip=3; IWy
\/ 17
18 ip=1; 3Wy,
19 ip=2; 3Wy
20 ip=0; 3W,,
21
LDA,,, ;, 22 ip=0; IW,,

Sort: W,,>W,.>W,,>W,;>W,,>W,;>W,,>W,,



» Mapping of blocks A, ,, on to processors [3] :

o Defines the sum of weights: 3 W,, =3 M,, - LDA,,, .,
kb kb

o Descending sort of sum of weights

o Vipe [O, 1,...,ProcNumb — 1] sumofweights[ip] =0

o Vibe L find min_ip €0, 1, ..., ProcNumb-1] |
(sumofwe:ghts[mm ip] is minimal)

e sumofweights[min_ip] += 3 W,, ; thread_numb[ib] = min_ip
kb

o end loop over ib

o Vkbe Link [ ]b] (loop over kb)

o Yib e Lkb (loop over ib)

o Q[thread_numb[ib] | € (A, s ; A ks 5 kb) (put to queues Qfip])

o end loops over ib, kb



» Parallel update of block column jb [3] :

o # pragma omp parallel (ip € [0, ProcNumb-1))

o while(Q/ip] is not empty)

o Ainkos A € Qlipl; Qlip] € (Qlip] /(A ki Ajp, ks 3 kb))
o Aib,jb = Aib,jb — Ay Sy A jpav;

@ end while

o end of parallel region



Virtualization

» 00C mode is turned on if the dimension of problem exceeds
the core memory storage [3]

Stored to disk and free

Never allocated

Allocated in RAM
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Virtualization

» 0O0C1 mode is turned on if the dimension of problem exceeds
the capability of OOC mode

Stored to disk and free

Never allocated

Allocated in RAM

31



Numerical results

1. 4-core computer Intel® Core™2 Quad CPU Q6600 @2.40 GHz,
cache L1 -32 KB, L2 - 4096 KB,
RAM: DDR2 800 MT/s, 8 GB core memory,
Chipset: Intel P35/G33/G31,
OS — Windows Vista™ Business (64-bit), Service Pack 2

2. 4-core computer AMD Phenom™ Il x4 995 3.2 GHz;
L1: 4x64 KB L2:4x512 KB L3: 6 MB;
RAM: DDR3 1066 MT/s, 16 GB core memory,
Chipset: AMD 790X,
0OS: Windows Vista™ Business (64-bit), Service Pack 2



Numerical results

3. Workstation DELL with two processors Intel Xeon X5660 @ 2.8
GHz /3.2 GHz (2x6 = 12 cores),
RAM DDR3, 24 GB core memory,
OS - Windows 7 (64-bit)

4. Notebook Toshiba Satellite:
Processor: Intel Pentium Dual CPU T3200 @ 2.00 GHz
Cache: L1: 32 KB, L2: 1024 KB
RAM: DDR2 - 667 MT/s 4 GB

Chipset: Intel GL40 rev. 07
0S: Windows Vista™ Business (64-bit), Service Pack 2



Numerical results

Table 1. Duration of numerical factorization (s) for a Cube 50x50x50

problem (397,941 equations), methods BSMFM and ANSYS v11.0 are
used, a Core™2 Quad based computer

Method Number of processors Comments
1 2 4
BSMFM 827 504 365 ia32
ANSYS v11.0 1610 882 544 ia32

The performance of the BSMFM solver [4, 5] is at least as good as
that of the multi-frontal method implemented in the well-known
ANSYS software. Therefore the BSMFM method can be treated as

a good implementation of the multi-frontal method which is quite
usable in comparisons of this kind.
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Numerical results

Multi-functional complex “Aquamarine” in Vladivostok
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Numerical results

» Real problems from computational practice of SCAD

| Wl
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27777 149494 17

PRI 176619 (0.9 fpsiGeForce 8300 GTS/PCI/SSED2 NVIDIA Corporation 2.1.2

|

Aquamarine problem, 881 908 equations
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Numerical results

Table 2. Duration of numerical factorization (s) of the for the Aquamarine
problem, 881 908 equations [3].

Method NonZer Number of processors Comments
(L), MB 1 2 3 4

PARFES (CM)| 3511 186 97 67 53 x64, Core™2 Quad

PARDISO(CM) | 3252 | 160 89 69 62 x64, Core™2 Quad

BSMFM (CM)| 3187 | 369 | 284 | 257 | 246 x64, Core™2 Quad

PARFES (CM)| 3511 139 | 71.9 | 495 | 38.6 | x64, AMD Phenom™ || x4
995

PARDISO(CM) | 3187 | 135 | 70.6 | 49.2 | 39.9 | x64, AMD Phenom™ || x4
995

BSMFM (CM)| 3187 | 291 | 203 | 180 | 166 x64, AMD Phenom™ || x4
995
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Numerical results

B DASDATA\Prob\oxema newl.SPR

lotoBo 27777 534490 777977777 556905 (0.3 fps)Geforce BAO0D GTS/PCL/SSE2 NVIDIA Carporation 2.1 2

Problem schema_new_1, 3 198 609 equations
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Numerical results

Table 3. Duration of the solution phases of the schema_new_1 problem
(3,198,609 equations), a Core™2 Quad based computer [3]

Method NonZer | Ana- Numerical Solution Com-
(L), MB lysis, factorization, s phase, s ment
’ S Number of processors Number of S
proc.
1 2 3 4 1 4

PARFES (OOC)| 12186 | 23.6 |1190| 802 | 594 | 475 | 804 526 | X64
PARDISO(OOC) | 10662 | 61.4 | Numer. factorization phase: error = -11 | X64
BSMFM (OOC) | 10869 | 9.0 |2011]|1482|1286]1 232 497 x64




Numerical results
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Numerical results

4 . 32 453 MFLOPS
ideal 12 186 MB RAM
Craeaes
.| PPRRFESON = 4 22898 MIFLOPS
: 2 995 MB RAM
o 8 610 MFLOPS
= 706 MB RAM
2
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o
n
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0

3 4
number of processors

Schema_new_1 problem on an AMD Phenom™ Il x4 995
based computer (numerical factorization phase),
RAM - 16 GB



Numerical results

Performance, MFLOPS Core Memory, MB
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Schema_new_1 problem on an AMD Phenom™ Il x4 995 based
computer (numerical factorization phase),
RAM - 16 GB
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Numerical results

Table 4. Duration of factoring phase for problem schema_new 1 (3,198,609
equations), AMD Phenom™ Il x4 995 based computer (numerical factorization
phase), RAM - 16 GB

No's of PARFES PARDISO
roc.
P Numer. | MFLOPS |S,=T,/T,| Numer. | MFLOPS |S, =T,T,
Fact, s Fact, s

1 729 8 759 1 697 7 782 1
2 372 17 160 1.96 367.4 14 775 1.90
3 255 25 063 2.86 260 20 861 2.68
4 196.9 32453 3.70 207.8 26 181 3.35




Numerical results

Tabn. 5. Table 8. Duration of factoring phase for problem schema_new 1
(3,198,609 equations), workstation DELL with two processors Intel Xeon
X5660 @ 2.8 GHz /3.2 GHz (12 cores), RAM 24 GB, DDR3, Core mode,
platform x64

No’s of PARFES PARDISO BSMFM

proc. Anal., s | Num. Fact.,s | Anal.,s | Num. Fact.,s | Anal., s | Num. Fact., s
1 16.9 654 31.06 596 13 1406
2 16.9 337.8 23.59 305.3 13 1015
3 16.9 232.1 25.33 208.6 13 869
4 16.9 177.9 23.26 163.3 13 793
5 16.9 145.7 23.79 135.7 13 786
6 16.9 125.6 25.68 116 13 777
7 16.9 110.6 23.11 100.9 13 772
8 16.9 100.5 23.43 90.83 13 807
9 16.9 92.5 23.98 83.85 13 770
10 16.9 86.3 23.71 79.6 13 796
11 16.9 82.1 29.86 77.36 13 825
12 16.9 87.5 28.58 78.45 13 839




Numerical results
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Numerical results

Notebook Toshiba Satellite:
Processor: Intel Pentium Dual CPU T3200 @ 2.00 GHz
Cache: L1: 32 KB, L2:1024 KB
RAM: DDR2 - 667 MT/s 4 GB

Chipset: Intel GL40 rev. 07
OS — Windows Vista™ Business (64-bit), Service Pack 2

Applicationia32 OOC1 mode 2 threads
Analysis : 265
Assembling : 196s= 316"
Numerical factoring :3111s=51"51"
Forward/Back reduction: 1 194 s = 19 54”
Total time :4532s=75"32"
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Numerical results

Table 6. Duration of the solution phase of Oster_PC_34_PC2 problem (2,763,181
equations), an AMD Phenom™ Il x4 995 based computer [3]

Method NonZer | Ana- Numerical Solution Com
(L), MB |lysis factorization, s phase,s | ments
S Number of processors Number of
proc.
1 2 3 4 1 4

PARFES (OOC)| 15761 |49.1]11649| 891] 640| 530| 592 | 510 | x64

PARDISO(OOC) Page Fault during analysis phase x64

BSMFM 14622 | 29 |2700|1563 |1 251 |1 059 498 x64




Sp=T1/Tp

Numerical results — OOC mode [3]
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PART Il. MODAL & SEISMIC ANALYSIS

A block Lanczos method with spectral
transformations for natural vibrations and
seismic analysis of large structures



The methods which are applied in modern
FEA software most often are:

* Block subspace iteration (E. Wilson)

* Block Lanczos method (Ericsson T., Ruhe A., Grimes R.G.,
Lewis J.G., Simon H.D., Golub G.H., Underwood R.R.)



The Lanczos method: main idea

The eigenvalue problem is considered: Ko—ao'M@=0

Factorize the stiffness matrix: K=L-S-L'

For arbitrary start vector q, (q, must have zero components for
equations with zero rows in mass matrix) performs an iterative
process:

Solve: Kq.,=Mq,=>q, — G,=K'Mq; j=12,...
On each step ﬁj+1 is orthogonalized to all previous obtained

vectors 4;.q,,----q; - In exact arithmetic is needed to
orthogonalize explicitly only against q,.q .

So, the recursionis: q,, =K, Mq,-a.q.-54 .,



The Lanczos method: main idea

where «; = (jT. Mq ; and B; is taken from previous step.

On step j+1: JH \/q wMq 4. = .1+1 / IBJH

The given sequence of vectors creates a Krylov subspace and

is a fine basis for Rayleigh—Ritz method. The source problem

is presented:
K;le—G\yzO, 0=1/1

Application of Rayleigh—Ritz method leads to:

(o B, )
p o P
Ty -1 .
Ts —-60s.=0, T,=Q K /MQ, = B, o p,

. B a;)



The Lanczos method: main idea
and Q, ={q1,q2,...,qj} are Lanczos vectors and

_ {2 j}
YJ_SJQJ, Sj_{Sj,Sj,---,S°

J

are the Ritz vectors. The given algorithm is numerically stable
until the first eigenpair is converged. The selective and partial
orthogonalizations are introduced to ensure the numerical
stability of Lanczos method.



The shifted block Lanczos method [9] is applied to increase a
performance of classical one.

We solve: K o-aoM@=0,

where K_=K-oM; o’ =’ +0; o —shift

The block version of algorithm allows us to reduce the 1/0O operations
during forward — back substitutions due to parallel implementation of
the several (block) right-hand-sides (r.h.s.) instead of single r.h.s. It is
very important for large problems: 60 000 — 1 500 000 degrees of
freedom (DOFs) and more.
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1

W’ —o

The spectral transformations: K /MO=40, Ay =

are implemented to split the long frequency interval into a few
relatively short ones and reduce the drastic increase of Krylov
subspace size, caused by large number of required eigenpairs.

Atrustinterval [9]: Ae (A, A ] A, >A,

« All eigenpairs are extracted with precision not worse than:
/ 1

2

CO,-ZM(P,- , = prec <10l =107° 107", A=—
« The skipped eigenpairs are missing in the trust interval

HK(Pi ~ O)izM(pi

®;
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The extraction of large number eigenpairs consists of expanding of
trust interval by means evaluating of relatively small subintervals.

The choice of new shift value is based on prediction of the right
part of the eigenspectrum:

A

_'_’_.?..T’O..OETOEO >
A O A, new shift value
/
continued part 6 eigenpair
~ of spectra is expected
< > < 4

@ Converged eigenpairs (prec < tol)

(O Ritz approximations (0.01 > prec > tol)

Coarse approximations (0.01 < prec)




The modes of analysis

Well-known modes:

1. Modal mode — extraction of the required number of eigenpairs

2. Interval mode — extraction of all eigenpairs in frequency
interval [a,b]

Specific modes:

3. Seismic mode [6] — extraction of eigenpairs so long as the
Required sum of modal masses will be achieved in each seismic
Input direction.

4. Verification mode [7] — allows us to detect hard-to-find errors of
a finite element model, such as a local and global dimensional
instability, lack of supports and so on.




The modal mode

Multi — storey building in Kiev. FEM
model contains 19409 nodes, 19456
finite elements and 115 362 equations
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Table 1: The efficiency of different methods

Number |Subspace Block subspace | Lanczos Block Lanczos
of eigen- | iterations iterations method method with
pairs method method shifts

25 2h28m31ls 1h49m38s 54m24s 38m1l4s

50 5h18 m33s 3h06m16s 1h22m37s 55m56s
100 >24 h ~12 h 2h22m114s 1h52m1l4s
1000 |- | s e 11h25m02s

Computer: P-lll CPU Intel 1000 MHz , RAM 512 VB

Precision of eigenpairs is not worse than 102




Seismic mode [Fialko S.]

Mass participation factor: ' =(M¢,,1,.), i=12,..n, dir=0X,0Y,0Z

l

i — mode number, dir — seismic input direction .

Modal mass:  m" = (I J /My x100% ., M, =(MI,,.1,,)

tot

N .
Property: Zmidlr — 100%, dir = OX, OY, 07z
i=l1

N — number of degrees of freedom of finite element model,
n — number of eigenmodes, taken into account, usuallyn << N

If all eigenmodes are taken into account (n = N), the sum of modal
masses is 100% for each seismic input direction. Otherwise (n <
N), the sum of modal masses is less than 100%. So, the sum of
modal masses is a criteria: does the number of eigenmodes taken
into account represent the seismic response well enough?
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Seismic mode

B—

. /\
H A

Mode 1 Mode 2 Mode 3 SRSS over 100
modes

Example: 100 DOFs — 100 modes are extracted




0.9

0.8

0.7

0.6

0.5

0.4

Seismic responce

0.3
0.2

0.1

N, — axis force,
V -shear force,

Seismic mode

erd A A
7

N /

/

/

/ ~-NA/NA(100%)
',/‘ -=-V/V(100%)
M/M(100%)

20 40 60 80 100

Sum of modal masses, %

N,(100%) - axis force for 100% sum of modal masses
V(100%) — shear force for 100% sum of modal masses

M - overturning moment, M(100%) — overturn. moment for 100% sum of m. m.
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Seismic mode

Example [6]:

7
.
5

8 937 nodes, 9 073 finite elements and 52 572 equations.
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Seismic mode

100
R
wn 80
)
7))
©
= 60
[
S
40
S .
y— required Mx, My ——
O required Mz —
E 20 SUM MX exfie -
c:f; SUM MY ey
sum Mz =@=
0 .
0 500 1000 1500 2000

number of modes

2 399 eigenpairs are required to ensure a sufficient sum of
modal masses gm, =3 m, =90%, 3 m, = 70%.
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Seismic mode

i

==
I il

1st eigenmode, f = 4.185 Hz 523rd eigenmode, f = 5.67 Hz

mey =42%
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Seismic mode

i

==
I il

1st eigenmode, f = 4.185 Hz 523rd eigenmode, f = 5.67 Hz

mey =42%
178 factorizations of the shifted stiffness matrix, 2097 solutions

68



Verification mode [7]

Is designed to detect the geometric instability.

Main idea: if the model is a geometrically unstable,
det{K}=0 and problem Ky-AMy=0

has zero eigenvalues. The corresponding eigenmodes
presents the forms of movement mechanism.

The shift technique is applied to avoid a singularity during
factorization:

KG:LG.SG.L](;



Verification mode

RN

missing rod

Eigenmode for A, =0



Verification mode

FEM model

Eigenmode for
A, =2.09-108 Hz
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Eigenmode for
A, =6.91-108 Hz 71



‘THz

A <...< A <1.36-10

6 eigenmodes for

Unconstrained bottoms of

columns

24 434 nodes,
te elements,

ini

Verification mode

FEM model
26 273 f
127 165 equations
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CONCLUSIONS

The block Lanczos method with a spectral transformation is a
powerful tool for modal & seismic analysis of large design
models.

The presented realization contains the modal, interval, seismic
and verification modes.

Seismic mode allows us to avoid the multiple repetitions of
conventional modal mode when the required number of
eigenpairs is is not known in advance.

Verification mode allows us to display the forms of mechanism
movement and often to detect the another hardly-detected
mistakes of design model.



REFERENCES

Amestoy PR, Duff IS, L'Excellent J-Y. Multifrontal parallel distributed

symmetric and unsymmetric solvers. Comput. Meth. Appl. Mech. Eng.,
184: 501-520, 2000.

Dobrian F, Pothen A. Oblio: a sparse direct solver library for serial and
parallel computations. Technical Report describing the OBLIO software
library, 2000.

Fialko S. PARFES: A method for solving finite element linear equations on
multi-core computers. Advances in Engineering software. v 40, 12, 2010,
pp. 1256 — 1265.

Fialko S. The block substructure multifrontal method for solution of large
finite element equation sets. Technical Transactions, 1-NP, issue 8: 175 —
188, 2009.

Fialko S. The direct methods for solution of the linear equation sets in
modern FEM software. Moscow: SCAD SOFT, 2009. (in Russian).




REFERENCES

Fialko S. Realization of block Lanczos method with shifts in SCAD software
applying to seismic analysis of structures. CADmaster #40/5.2007
(additional), p. 102 — 105. (In Russian).

Karypis G, Kumar V. METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. Technical report, Department of Computer
Science, University of Minnesota, Minneapolis, 1995.

Schenk O, Gartner K. Two-level dynamic scheduling in PARDISO: Improved
scalability on shared memory multiprocessing systems. Parallel Computing
28:187-197, 2002.

Grimes, R.G. Lewis, J.G., Simon, H.D., A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal.
Appl, V.15, 1: pp. 1-45, 1994.



Thank you very much for
your attention !



