Sludge Rheology Paul Grassia CEAS, University of Manchester paul.grassia@manchester.ac.uk Shane Usher, Peter Scales Chemical & Biomolecular Engng, University of Melbourne

Sludge Rheology - An Application

Greater Manchester produces of sludge per day

Outline of Talk Foams vs sludges Sludge settling theory Sludge rheological properties 'Diffusion' of solids in networked sludges Measurement of sludge rheological properties Batch settling tests Reconstruction of solids fluxes An explicit flux reconstruction formula **Conclusions**

Context: Bubbles Isolated bubbles rise Stokes rise velocity balances:

buoyancy ∼ viscous drag

Context: Swarms of Bubbles

Hindered bubble rise

In ^a vessel with ^a closed bottom, bubbles go up, liquid returns downward Returning liquid holds back bubbles

Context: Densely packed bubbles (A Foam) Liquid drains through channels between bubbles

A 'third' force is present

buoyancy $+$ capillary suction (wet to dry) \sim viscous drag

Capillary suction pressure P is a function of liquid fraction ε

Context: Foam Drainage Equation Foam force balance $+$ Continuity equation for liquid = Foam drainage equation (An advection-diffusion equation for liquid fraction $\varepsilon)$

Sludges: Upside down foams

Solid particles settle

Stokes settling velocity, balances: apparent weight \sim viscous drag

Sludges: Flocculation

Particles gather together into loosely bound flocs (bind bacteria, extracellular protein, etc.)

Flocs are the 'effective particles' Stokes settling of flocs

Hindered settling of flocs Due to extended nature of flocs, effective at hindering settling (even at relatively low solids fractions)

apparent weight + network stress \sim viscous drag

Dewatering Flocs contain liquid one would like to remove raw sludge \bigcirc | clear liquid (drinking) ⇒ dense sludge (disposal)

Aim: Squeeze as much liquid out of sludge, as quickly as possible

$$
u = \frac{u_0}{r(\phi)}
$$

where $u_{\mathbf{0}}$ is Stokes settling speed of isolated floc, $r(\phi)$ is a hindered settling factor (an important material property) r 1

φ

Settling speed in ^a networked suspension - Theory Network can bear weight Buscall and White theory (1987)

$$
u = \frac{u_0}{r(\phi)} \left(1 + \frac{\mathrm{d}P/\mathrm{d}z}{\Delta \rho g \phi} \right)
$$

where d $P/{\tt d}z$ is network pressure gradient, $\Delta \rho g \phi$ is apparent weight force of solids In final equilibrium state $u=0$: pressure gradient balances apparent weight

Network can support any compressive stress P up to P_y If P exceeds P_y , liquid is squeezed out and network dewaters

Hard vs soft materials

Hard materials compact to a particular solids fraction in finite time (and stay there)

Soft materials: can always squeeze ^a bit more liquid out, rate of squeezing ↓ as channels between (& thru) flocs forced shut Hard vs soft materials: differing behaviour of $P_y(\phi)$ and $r(\phi)$

Rate of dewatering

Material derivative following a floc

$$
\frac{D\phi}{Dt} = 0, \quad P < P_y
$$
\n
$$
\frac{D\phi}{Dt} = \kappa(\phi)(P - P_y), \quad P > P_y
$$

where $\kappa(\phi)$ is a dynamic compressibility (a material property)

Continuity equation:

$$
\frac{\mathsf{D}\phi}{\mathsf{D}t} + \phi \nabla.u = 0
$$

Rate determining step for $D\phi/Dt$ is not dynamic compressibility $\kappa(\phi)(P-P_y)$, but rather the spatial variation in u (associated with spatial changes in ϕ across the network)

Determination of network stress When network is consolidating, $P \approx P_y(\phi)$ so that dewatering rate $D\phi/Dt = \kappa(\phi)(P-P_y)$ is satisfied with $P-P_y\ll 1,~\kappa\gg 1$ In general, P can be anywhere between 0 and $P_y(\phi)$,

with the network compressing plastically whenever $P = P_y(\phi)$

Settling velocity in a plastically compressing network Yield stress gradient d $P_y(\phi)/$ d z replaces pressure gradient d $P/{\rm d}z$ in Buscall and White (1987) equation

$$
u = \frac{u_0}{r(\phi)} \left(1 + \frac{dP_y(\phi)/dz}{\Delta \rho g \phi} \right)
$$

=
$$
\frac{u_0}{r(\phi)} + \frac{u_0 dP_y(\phi)/d\phi}{\Delta \rho g \phi r(\phi)} \frac{d\phi}{dz}
$$

 u_0 d $P_y(\phi)/$ d $\phi/\Delta\rho g \phi r(\phi)$ behaves as a diffusion coefficient $D(\phi)$

An advection-diffusion equation results for solids fraction ϕ (analogous to the foam drainage equation for liquid fraction $\varepsilon)$

In some parts of the sludge $P_y = 0 \longrightarrow \mathrm{d} P_y(\phi)/\mathrm{d} \phi \longrightarrow D(\phi) = 0$ (in that case, pure advection, rather than advection-diffusion)

Sludge rheology from ^a modeller's viewpoint: Deducing sludge material properties $P_y(\phi)$, $r(\phi)$ and $D(\phi)$ from experimental sludge characterisation tests (i.e. solving inverse problems)

Once sludge material properties are known, solving mixed advection/advection-diffusion equations to predict performance of various dewatering equipment (settlers, thickeners, filter presses, centrifuges) Selecting and designing the best dewatering equipment for ^a sludge with given material properties

Measurement of Sludge Rheological Properties

↓

Experimentally measure $P_y(\phi)$ & $r(\phi)$ on the laboratory scale

Robustly design dewatering equipment on the engineering scale

Measurement of $P_y(\phi)$ (Green et al. 1996; Usher et al. 2001) $P_y(\phi)$ is a steady state property Settle sludge to steady state At steady state, vanishing settling velocity

$$
u \equiv 0 \qquad \longrightarrow \qquad \left(1 + \frac{\mathrm{d}P_y(\phi)/\mathrm{d}z}{\Delta\rho g\phi}\right) = 0
$$

Obtain $P_y(\phi)$ via a scrape test, measuring ϕ layer by layer One experiment furnishes P_y values for many different ϕ

least dense

densest

Measurement of hindered settling $r(\phi)$ and/or settling flux $r(\phi)$ is an inherently dynamic property (associated with differential motion between liquid and gas) Simplest to determine for an unnetworked suspension (at relatively low $\phi)$

$$
u = \frac{u_0}{r(\phi)}
$$

Settling flux:

Engineers are less concerned with settling speed $u=u_0/r(\phi)$ and more concerned with settling flux

$$
f(\phi) = \phi u = \frac{\phi u_0}{r(\phi)}
$$

Knowing $f(\phi)$ is equivalent to knowing $r(\phi)$

Typical settling flux curve $f\equiv\phi u_0/r(\phi)$ vs ϕ

Optimal (i.e. maximal) settling flux $|f|$ at a particular value of ϕ

Experiment furnishes r value for only one single value of ϕ

Examine batch settling data closely:

In ^a batch settling test, settling speed is initially constant but subsequently changes over time

Settling height switches from linear to nonlinear with respect to time

29

Changes in batch settling speed over time

Settling speed changes because. . .

 \dots solids fraction ϕ at the suspension surface changes

In principle, single experiment could furnish r for many values of ϕ (Lester et al. 2005) Use batch settling data intelligently to minimise experimentation required

Batch settling: The Challenge

Measure settling height h vs time t

↓ Reconstruct settling height f vs solids fraction ϕ for ^a range of solids fractions Which range?

33

Determining jump in solids fraction - Theory of kinematic waves:

Velocity matching based on properties of settling flux Group velocity $f'(\phi_*)$ associated with solids fraction ϕ_* matches Rankine-Hugoniot velocity $(f(\phi_*)-f(\phi_0)) / (\phi_*-\phi_0)$ of discontinuity between ϕ_{O} and ϕ_*

Upper limit of reconstruction range ϕ_{max} : Typically less than the suspension network gel point ϕ_g Highest solids fraction for which settling curve remains unaffected by the presence of networked sludge at the base of the suspension

 ϕ_{max} corresponds to a cut-off suspension settling height (Grassia et al. 2008)

$$
h_{cut-off} = \frac{\phi_0}{\phi_g} h_0
$$

 $h_{cut-off}$ is sensitive to $\phi_g,$ but not to the details of $P_y(\phi)$ for $\phi>\phi_g$

Batch settling: Measurements & Unknowns

Measure settling height h vs time t Changes in velocity \dot{h} reflect changes in $u \equiv f/\phi$

over a known range of solids fraction ϕ as achieved at the suspension surface

However instantaneous values ϕ at suspension surface are a priori unknown (and, being dynamic, are difficult to measure) \longrightarrow reconstruction must solve for ϕ in addition to settling flux f

36

Eqns to solve governing batch settling tests (Lester et al. 2005) Instantaneous settling velocity h

$$
\dot{h} = u(\phi) = \frac{f(\phi)}{\phi}
$$

Characteristic lines propagate up from the bottom of the sludge with a slope given by the group velocity $f'(\phi)$

$$
\frac{h}{t} = f'(\phi)
$$

Solutions for ϕ and f (Diehl 2007)

$$
\phi = \frac{\phi_0 h_0}{h - ht}, \quad f = \phi u = \frac{\phi_0 h_0 h}{h - ht}
$$

where $\phi_0 =$ initial solids fraction, $h_0 =$ initial suspension height

Easy to check (as required)

$$
\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{h}{t} \frac{\mathrm{d}\phi}{\mathrm{d}t} \quad \longrightarrow \quad \frac{h}{t} = f'(\phi)
$$

A parametric solution for ϕ and f in terms of t Sensitive to experimental noise (especially in \dot{h}) An 'exact' reconstruction procedure to within the limitations of the experimental noise Examples of experimental noise

Settling experiments on a calcium carbonate suspension (Data of Gladman et al. 2006) Small amount of noise in h vs t Noise in u vs t is considerable

Reducing sensitivity to experimental noise (Grassia et al. 2008) Power law fit to the settling height & velocity functions

$$
h = h_1 - \frac{\tau_1 |h_1|}{\beta} + \frac{\tau_1 |h_1| \tau_1^{\beta}}{\beta} , \quad u = -|h_1| \frac{\tau_1^{(\beta+1)}}{t^{(\beta+1)}}
$$

where $\tau_{1}=$ time at which \dot{h} begins to vary, $h_1 =$ settling height at which \dot{h} begins to vary, $\dot{h}_1=$ corresponding settling velocity, $\beta=$ power law fitting exponent Reduced sensitivity to noise

(since fitting eliminates fluctuations of individual \dot{h} values)

Settling flux reconstruction based on power law fits Explicit formula $f = f(\phi)$ $f = -\phi |\dot{h}_1|$ $\left(\begin{array}{c}\n\end{array}\right)$ β $\beta+1$! $(\beta+1)/\beta$ h_{O} $\tau_1 |\dot{h}_1|$ ϕ_O ϕ $\overline{+}$ 1 β − $h_{\mathbf{1}}$ $\tau_1 |\dot{h}_1|$! $(\beta+1)/\beta$ An approximate reconstruction formula to the extent that settling height data h vs t are well fit via a power law

Flux reconstructions from fits to experimental settling dat a (Again data of Gladman et al. 2006 - with $\phi_\mathrm{0}=$ 0.04)

Power law reconstruction technique within envelope of experimental noise No significant loss of accuracy & explicit formula for $f(\phi)$ is available $_{-0.3}$

Conclusions - Sludge Rheology Sludges are 'upside-down foams'

Sludges are characterised by two rheological functions hindered settling factor and compressive yield stress (both of which depend on solids fraction)

Knowledge of the rheological functions permits confident and robust design of engineering equipment

Sludge dewatering rate governed by spatial variations in solids fraction (inducing spatial variations in rheological functions), rather than by excess of imposed pressure over and above the local yield stress → Networked sludge superimposes a diffusive solids flux onto a convective buoyant flux

Conclusions - Measurement of Sludge Rheological Propertie s Compressive yield stress obtained from experimental scrape test Hindered settling function obtained from batch settling test A single settling test provides hindered settling data over ^a range of solids fractions Relevant range of solids fractions for reconstruction of hindered settling factor can be found independently of the compressive yield stress Approximate reconstruction formulae (e.g. based on power law fits to batch settling height data), provide explicit functional forms of the settling flux function that are well within the noise of experimental measurements