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Sludge Rheology - An Application

−→ −→

Greater Manchester produces of sludge per day
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Context: Bubbles

Isolated bubbles rise

Stokes rise velocity balances:

buoyancy ∼ viscous drag
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Context: Swarms of Bubbles

Hindered bubble rise

In a vessel with a closed bottom,

bubbles go up, liquid returns downward

Returning liquid holds back bubbles
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Context: Densely packed bubbles (A Foam)

Liquid drains through channels between bubbles

gravity
under
liquid

capillary
suction

viscous drag
on liquid

A ‘third’ force is present

buoyancy + capillary suction (wet to dry) ∼ viscous drag

Capillary suction pressure P is a function of liquid fraction ε
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Context: Foam Drainage Equation

Foam force balance

+

Continuity equation for liquid

=

Foam drainage equation

(An advection-diffusion equation for liquid fraction ε)
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Sludges: Upside down foams

Solid particles settle

Stokes settling velocity, balances:

apparent weight ∼ viscous drag
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Sludges: Flocculation

Particles gather together into loosely bound flocs

(bind bacteria, extracellular protein, etc.)

Flocs are the ‘effective particles’

Stokes settling of flocs
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Hindered settling of flocs

Due to extended nature of flocs,

effective at hindering settling

(even at relatively low solids fractions)
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Flocs in a network

Due to extended nature of flocs,

form a weight-bearing consolidated network

(even at relatively low solids fractions)

apparent
weight

viscous
drag
network
stress

A ‘third’ force is present

apparent weight + network stress ∼ viscous drag
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Dewatering

Flocs contain liquid one would like to remove

clear liquid (drinking)raw sludge

(disposal)
dense sludge

Aim: Squeeze as much liquid out of sludge,

as quickly as possible
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Settling speed of flocs - Theory

Hindered settling speed u depends on solids fraction φ

Kynch theory (1952)

u =
u0
r(φ)

where u0 is Stokes settling speed of isolated floc,

r(φ) is a hindered settling factor

(an important material property)
r

φ

1
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Settling speed in a networked suspension - Theory

Network can bear weight

Buscall and White theory (1987)

u =
u0
r(φ)

(

1+
dP/dz

∆ρgφ

)

where dP/dz is network pressure gradient,

∆ρgφ is apparent weight force of solids

In final equilibrium state u = 0:

pressure gradient balances apparent weight
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Network yield stress

Networked suspension is characterised by a yield stress Py(φ)

(an important material property)

φ

Py

gel
point

Network can support any compressive stress P up to Py

If P exceeds Py, liquid is squeezed out and network dewaters
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Hard vs soft materials

Hard materials compact to a particular solids fraction in finite time

(and stay there)

Soft materials: can always squeeze a bit more liquid out,

rate of squeezing ↓ as channels between (& thru) flocs forced shut
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Hard vs soft materials: differing behaviour of Py(φ) and r(φ)

P
y

φ

φ

r

hard

soft

hard
materials
stop here

soft materials
continue
to here

10 orders
of magnitude
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Rate of dewatering

Material derivative following a floc

Dφ

Dt
= 0, P < Py

Dφ

Dt
= κ(φ)(P − Py), P > Py

where κ(φ) is a dynamic compressibility (a material property)
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Continuity equation:

Dφ

Dt
+ φ∇.u = 0

Rate determining step for Dφ/Dt

is not dynamic compressibility κ(φ)(P − Py),

but rather the spatial variation in u

(associated with spatial changes in φ across the network)
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Determination of network stress

When network is consolidating, P ≈ Py(φ)

so that dewatering rate Dφ/Dt = κ(φ)(P − Py)

is satisfied with P − Py ≪ 1, κ≫ 1

In general, P can be anywhere between 0 and Py(φ),

with the network compressing plastically whenever P = Py(φ)
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Settling velocity in a plastically compressing network

Yield stress gradient dPy(φ)/dz replaces pressure gradient dP/dz

in Buscall and White (1987) equation

u =
u0
r(φ)

(

1+
dPy(φ)/dz

∆ρgφ

)

=
u0
r(φ)

+
u0 dPy(φ)/dφ

∆ρgφr(φ)

dφ

dz

u0 dPy(φ)/dφ/∆ρgφr(φ) behaves as a diffusion coefficient D(φ)

An advection-diffusion equation results for solids fraction φ

(analogous to the foam drainage equation for liquid fraction ε)
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Diffusion, but not as we know it!

φ

D

gel
point

diffusivity
vanishes

diffusivity
non−vanishing   

In some parts of the sludge Py = 0 −→ dPy(φ)/dφ −→ D(φ) = 0

(in that case, pure advection, rather than advection-diffusion)
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Sludge rheology from a modeller’s viewpoint:

Deducing sludge material properties Py(φ), r(φ) and D(φ)

from experimental sludge characterisation tests

(i.e. solving inverse problems)

Once sludge material properties are known,

solving mixed advection/advection-diffusion equations

to predict performance of various dewatering equipment

(settlers, thickeners, filter presses, centrifuges)

Selecting and designing the best dewatering equipment

for a sludge with given material properties
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Measurement of Sludge Rheological Properties

Experimentally measure Py(φ) & r(φ)

on the laboratory scale

↓

Robustly design dewatering equipment

on the engineering scale
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Measurement of Py(φ) (Green et al. 1996; Usher et al. 2001)

Py(φ) is a steady state property

Settle sludge to steady state

At steady state, vanishing settling velocity

u ≡ 0 −→

(

1+
dPy(φ)/dz

∆ρgφ

)

= 0

Obtain Py(φ) via a scrape test,

measuring φ layer by layer

One experiment furnishes

Py values for many different φ

least dense 

densest 
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Measurement of hindered settling r(φ) and/or settling flux

r(φ) is an inherently dynamic property

(associated with differential motion between liquid and gas)

Simplest to determine for an unnetworked suspension

(at relatively low φ)

u =
u0
r(φ)

Settling flux:

Engineers are less concerned with settling speed u = u0/r(φ)

and more concerned with settling flux

f(φ) = φu =
φu0
r(φ)

Knowing f(φ) is equivalent to knowing r(φ)

26



Typical settling flux curve f ≡ φu0/r(φ) vs φ
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Optimal (i.e. maximal) settling flux |f | at a particular value of φ
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Batch settling test:

Make multiple suspensions at many different φ values

Measure initial settling speed

densest

settling)
(slowest

least dense
(fastest
settling)

Experiment furnishes r value for only one single value of φ
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Examine batch settling data closely:

In a batch settling test, settling speed is initially constant

but subsequently changes over time

Settling height switches from linear to nonlinear with respect to time
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Changes in batch settling speed over time
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Settling speed changes because. . .

. . . solids fraction φ

at the suspension surface changes
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In principle, single experiment could furnish r

for many values of φ (Lester et al. 2005)

Use batch settling data intelligently

to minimise experimentation required
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Batch settling: The Challenge

Measure settling height h vs time t
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Reconstruct settling height f

vs solids fraction φ

for a range of solids fractions

Which range?
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Portion of f(φ) curve to be reconstructed
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Typically reconstruct from some φ∗
(greater than initial solids fraction φ0)

up to φmax

(less than network gel point φg)
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Lower limit of reconstruction range φ∗:

Typically a jump in solids fraction from φ0 to a higher value φ∗

is associated with a jump in settling speed from |ḣ0| to |ḣ1|;

this occurs at time τ1 and suspension height h1
h

.

h0

settling speed
linear region

t 

of nonlinearity
upon onset
settling speed

0
| h  |

1h

1
τ

.
| h  |

1

clear liquor

suspension

networked sludge

φ∗ =
(h1 + |ḣ0|τ1)

(h1 + |ḣ1|τ1)
φ0
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Determining jump in solids fraction - Theory of kinematic waves:

Velocity matching based on properties of settling flux

Group velocity f ′(φ∗) associated with solids fraction φ∗
matches Rankine-Hugoniot velocity (f(φ∗)− f(φ0))/(φ∗ − φ0)

of discontinuity between φ0 and φ∗
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Upper limit of reconstruction range φmax:

Typically less than the suspension network gel point φg

Highest solids fraction for which settling curve remains unaffected

by the presence of networked sludge at the base of the suspension

φmax corresponds to a cut-off

suspension settling height

(Grassia et al. 2008)

hcut-off =
φ0
φg

h0

hcut-off is sensitive to φg,

but not to the details of Py(φ)

for φ > φg
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Batch settling: Measurements & Unknowns
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Measure settling height h vs time t

Changes in velocity ḣ reflect

changes in u ≡ f/φ

over a known range of solids fraction φ

as achieved at the suspension surface

However instantaneous values φ

at suspension surface

are a priori unknown

(and, being dynamic,

are difficult to measure)

−→ reconstruction must solve for φ

in addition to settling flux f
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Eqns to solve governing batch settling tests (Lester et al. 2005)

Instantaneous settling velocity

ḣ = u(φ) =
f(φ)

φ

Characteristic lines propagate up

from the bottom of the sludge

with a slope given by

the group velocity f ′(φ)

h

t
= f ′(φ)

h

t 

.

clear liquor

networked sludge

settling velocity
φ  h  = f(   ) /φ

φ
φ

suspension

’slope h/t = f  (   )
characteristic lines of constant 
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Solutions for φ and f (Diehl 2007)

φ =
φ0h0
h− ḣt

, f = φu =
φ0h0ḣ

h− ḣt

where φ0 = initial solids fraction, h0 = initial suspension height

Easy to check (as required)

df

dt
=

h

t

dφ

dt
−→

h

t
= f ′(φ)

A parametric solution for φ and f in terms of t

Sensitive to experimental noise (especially in ḣ)

An ‘exact’ reconstruction procedure

to within the limitations of the experimental noise

38



Examples of experimental noise

Settling experiments on a calcium carbonate suspension

(Data of Gladman et al. 2006)

Small amount of noise in h vs t

Noise in u vs t is considerable
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Reducing sensitivity to experimental noise (Grassia et al. 2008)

Power law fit to the settling height & velocity functions

h = h1 −
τ1|ḣ1|

β
+

τ1|ḣ1|

β

τ
β
1

tβ
, u = −|ḣ1|

τ
(β+1)
1

t(β+1)

where τ1 = time at which ḣ begins to vary,

h1 = settling height at which ḣ begins to vary,

ḣ1 = corresponding settling velocity, β = power law fitting exponent

Reduced sensitivity to noise

(since fitting eliminates fluctuations of individual ḣ values)

40



Settling flux reconstruction based on power law fits

Explicit formula f = f(φ)

f = −φ|ḣ1|

(

β

β +1

)(β+1)/β (
h0

τ1|ḣ1|

φ0
φ

+
1

β
−

h1
τ1|ḣ1|

)(β+1)/β

An approximate reconstruction formula

to the extent that

settling height data h vs t

are well fit via a power law
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Flux reconstructions from fits to experimental settling data

(Again data of Gladman et al. 2006 - with φ0 = 0.04)

Power law reconstruction technique

within envelope of experimental noise

No significant loss of accuracy &

explicit formula for f(φ) is available
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 0
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f/u
0

φ

power law
reconstruction
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Conclusions - Sludge Rheology

Sludges are ‘upside-down foams’

Sludges are characterised by two rheological functions

hindered settling factor and compressive yield stress

(both of which depend on solids fraction)

Knowledge of the rheological functions permits

confident and robust design of engineering equipment

Sludge dewatering rate governed by spatial variations in

solids fraction (inducing spatial variations in rheological functions),

rather than by excess of imposed pressure

over and above the local yield stress

−→ Networked sludge superimposes a diffusive solids flux

onto a convective buoyant flux
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Conclusions - Measurement of Sludge Rheological Properties

Compressive yield stress obtained from experimental scrape test

Hindered settling function obtained from batch settling test

A single settling test provides hindered settling data

over a range of solids fractions

Relevant range of solids fractions

for reconstruction of hindered settling factor can be found

independently of the compressive yield stress

Approximate reconstruction formulae

(e.g. based on power law fits to batch settling height data),

provide explicit functional forms of the settling flux function that are

well within the noise of experimental measurements
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